2,724 research outputs found

    Algorithms and Hardness for Robust Subspace Recovery

    Full text link
    We consider a fundamental problem in unsupervised learning called \emph{subspace recovery}: given a collection of mm points in Rn\mathbb{R}^n, if many but not necessarily all of these points are contained in a dd-dimensional subspace TT can we find it? The points contained in TT are called {\em inliers} and the remaining points are {\em outliers}. This problem has received considerable attention in computer science and in statistics. Yet efficient algorithms from computer science are not robust to {\em adversarial} outliers, and the estimators from robust statistics are hard to compute in high dimensions. Are there algorithms for subspace recovery that are both robust to outliers and efficient? We give an algorithm that finds TT when it contains more than a dn\frac{d}{n} fraction of the points. Hence, for say d=n/2d = n/2 this estimator is both easy to compute and well-behaved when there are a constant fraction of outliers. We prove that it is Small Set Expansion hard to find TT when the fraction of errors is any larger, thus giving evidence that our estimator is an {\em optimal} compromise between efficiency and robustness. As it turns out, this basic problem has a surprising number of connections to other areas including small set expansion, matroid theory and functional analysis that we make use of here.Comment: Appeared in Proceedings of COLT 201

    Smoothed Analysis in Unsupervised Learning via Decoupling

    Full text link
    Smoothed analysis is a powerful paradigm in overcoming worst-case intractability in unsupervised learning and high-dimensional data analysis. While polynomial time smoothed analysis guarantees have been obtained for worst-case intractable problems like tensor decompositions and learning mixtures of Gaussians, such guarantees have been hard to obtain for several other important problems in unsupervised learning. A core technical challenge in analyzing algorithms is obtaining lower bounds on the least singular value for random matrix ensembles with dependent entries, that are given by low-degree polynomials of a few base underlying random variables. In this work, we address this challenge by obtaining high-confidence lower bounds on the least singular value of new classes of structured random matrix ensembles of the above kind. We then use these bounds to design algorithms with polynomial time smoothed analysis guarantees for the following three important problems in unsupervised learning: 1. Robust subspace recovery, when the fraction α\alpha of inliers in the d-dimensional subspace TRnT \subset \mathbb{R}^n is at least α>(d/n)\alpha > (d/n)^\ell for any constant integer >0\ell>0. This contrasts with the known worst-case intractability when α<d/n\alpha< d/n, and the previous smoothed analysis result which needed α>d/n\alpha > d/n (Hardt and Moitra, 2013). 2. Learning overcomplete hidden markov models, where the size of the state space is any polynomial in the dimension of the observations. This gives the first polynomial time guarantees for learning overcomplete HMMs in a smoothed analysis model. 3. Higher order tensor decompositions, where we generalize the so-called FOOBI algorithm of Cardoso to find order-\ell rank-one tensors in a subspace. This allows us to obtain polynomially robust decomposition algorithms for 22\ell'th order tensors with rank O(n)O(n^{\ell}).Comment: 44 page

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201
    corecore