1,746 research outputs found

    A* Orthogonal Matching Pursuit: Best-First Search for Compressed Sensing Signal Recovery

    Full text link
    Compressed sensing is a developing field aiming at reconstruction of sparse signals acquired in reduced dimensions, which make the recovery process under-determined. The required solution is the one with minimum 0\ell_0 norm due to sparsity, however it is not practical to solve the 0\ell_0 minimization problem. Commonly used techniques include 1\ell_1 minimization, such as Basis Pursuit (BP) and greedy pursuit algorithms such as Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP). This manuscript proposes a novel semi-greedy recovery approach, namely A* Orthogonal Matching Pursuit (A*OMP). A*OMP performs A* search to look for the sparsest solution on a tree whose paths grow similar to the Orthogonal Matching Pursuit (OMP) algorithm. Paths on the tree are evaluated according to a cost function, which should compensate for different path lengths. For this purpose, three different auxiliary structures are defined, including novel dynamic ones. A*OMP also incorporates pruning techniques which enable practical applications of the algorithm. Moreover, the adjustable search parameters provide means for a complexity-accuracy trade-off. We demonstrate the reconstruction ability of the proposed scheme on both synthetically generated data and images using Gaussian and Bernoulli observation matrices, where A*OMP yields less reconstruction error and higher exact recovery frequency than BP, OMP and SP. Results also indicate that novel dynamic cost functions provide improved results as compared to a conventional choice.Comment: accepted for publication in Digital Signal Processin

    Expander 0\ell_0-Decoding

    Get PDF
    We introduce two new algorithms, Serial-0\ell_0 and Parallel-0\ell_0 for solving a large underdetermined linear system of equations y=AxRmy = Ax \in \mathbb{R}^m when it is known that xRnx \in \mathbb{R}^n has at most k<mk < m nonzero entries and that AA is the adjacency matrix of an unbalanced left dd-regular expander graph. The matrices in this class are sparse and allow a highly efficient implementation. A number of algorithms have been designed to work exclusively under this setting, composing the branch of combinatorial compressed-sensing (CCS). Serial-0\ell_0 and Parallel-0\ell_0 iteratively minimise yAx^0\|y - A\hat x\|_0 by successfully combining two desirable features of previous CCS algorithms: the information-preserving strategy of ER, and the parallel updating mechanism of SMP. We are able to link these elements and guarantee convergence in O(dnlogk)\mathcal{O}(dn \log k) operations by assuming that the signal is dissociated, meaning that all of the 2k2^k subset sums of the support of xx are pairwise different. However, we observe empirically that the signal need not be exactly dissociated in practice. Moreover, we observe Serial-0\ell_0 and Parallel-0\ell_0 to be able to solve large scale problems with a larger fraction of nonzeros than other algorithms when the number of measurements is substantially less than the signal length; in particular, they are able to reliably solve for a kk-sparse vector xRnx\in\mathbb{R}^n from mm expander measurements with n/m=103n/m=10^3 and k/mk/m up to four times greater than what is achievable by 1\ell_1-regularization from dense Gaussian measurements. Additionally, Serial-0\ell_0 and Parallel-0\ell_0 are observed to be able to solve large problems sizes in substantially less time than other algorithms for compressed sensing. In particular, Parallel-0\ell_0 is structured to take advantage of massively parallel architectures.Comment: 14 pages, 10 figure

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Sampling of graph signals via randomized local aggregations

    Get PDF
    Sampling of signals defined over the nodes of a graph is one of the crucial problems in graph signal processing. While in classical signal processing sampling is a well defined operation, when we consider a graph signal many new challenges arise and defining an efficient sampling strategy is not straightforward. Recently, several works have addressed this problem. The most common techniques select a subset of nodes to reconstruct the entire signal. However, such methods often require the knowledge of the signal support and the computation of the sparsity basis before sampling. Instead, in this paper we propose a new approach to this issue. We introduce a novel technique that combines localized sampling with compressed sensing. We first choose a subset of nodes and then, for each node of the subset, we compute random linear combinations of signal coefficients localized at the node itself and its neighborhood. The proposed method provides theoretical guarantees in terms of reconstruction and stability to noise for any graph and any orthonormal basis, even when the support is not known.Comment: IEEE Transactions on Signal and Information Processing over Networks, 201

    Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization

    Full text link
    Hard Thresholding Pursuit (HTP) is an iterative greedy selection procedure for finding sparse solutions of underdetermined linear systems. This method has been shown to have strong theoretical guarantee and impressive numerical performance. In this paper, we generalize HTP from compressive sensing to a generic problem setup of sparsity-constrained convex optimization. The proposed algorithm iterates between a standard gradient descent step and a hard thresholding step with or without debiasing. We prove that our method enjoys the strong guarantees analogous to HTP in terms of rate of convergence and parameter estimation accuracy. Numerical evidences show that our method is superior to the state-of-the-art greedy selection methods in sparse logistic regression and sparse precision matrix estimation tasks
    corecore