52 research outputs found

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    MORPH-DSLAM: Model Order Reduction for PHysics-based Deformable SLAM

    Get PDF
    We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem to properly describe the strain and stress fields that are consistent with the displacements captured by the images, constrained by real physics. We do not impose any ad-hoc prior or energy minimization in the external surface, since the real and complete mechanics problem is solved. This means that we can also estimate the internal state of the objects, even in occluded areas, just by observing the external surface and the knowledge of material properties and geometry. Solving this problem in real time using a realistic constitutive law, usually non-linear, is out of reach for current systems. To overcome this difficulty, we solve off-line a parametrized problem that considers each source of variability in the problem as a new parameter and, consequently, as a new dimension in the formulation. Model Order Reduction methods allow us to reduce the dimensionality of the problem, and therefore, its computational cost, while preserving the visualization of the solution in the high-dimensionality space. This allows an accurate estimation of the object deformations, improving also the robustness in the 3D points estimation

    Non-Rigid Structure from Motion

    Get PDF
    This thesis revisits a challenging classical problem in geometric computer vision known as "Non-Rigid Structure-from-Motion" (NRSfM). It is a well-known problem where the task is to recover the 3D shape and motion of a non-rigidly moving object from image data. A reliable solution to this problem is valuable in several industrial applications such as virtual reality, medical surgery, animation movies etc. Nevertheless, to date, there does not exist any algorithm that can solve NRSfM for all kinds of conceivable motion. As a result, additional constraints and assumptions are often employed to solve NRSfM. The task is challenging due to the inherent unconstrained nature of the problem itself as many 3D varying configurations can have similar image projections. The problem becomes even more challenging if the camera is moving along with the object. The thesis takes on a modern view to this challenging problem and proposes a few algorithms that have set a new performance benchmark to solve NRSfM. The thesis not only discusses the classical work in NRSfM but also proposes some powerful elementary modification to it. The foundation of this thesis surpass the traditional single object NRSFM and for the first time provides an effective formulation to realise multi-body NRSfM. Most techniques for NRSfM under factorisation can only handle sparse feature correspondences. These sparse features are then used to construct a scene using the organisation of points, lines, planes or other elementary geometric primitive. Nevertheless, sparse representation of the scene provides an incomplete information about the scene. This thesis goes from sparse NRSfM to dense NRSfM for a single object, and then slowly lifts the intuition to realise dense 3D reconstruction of the entire dynamic scene as a global as rigid as possible deformation problem. The core of this work goes beyond the traditional approach to deal with deformation. It shows that relative scales for multiple deforming objects can be recovered under some mild assumption about the scene. The work proposes a new approach for dense detailed 3D reconstruction of a complex dynamic scene from two perspective frames. Since the method does not need any depth information nor it assumes a template prior, or per-object segmentation, or knowledge about the rigidity of the dynamic scene, it is applicable to a wide range of scenarios including YouTube Videos. Lastly, this thesis provides a new way to perceive the depth of a dynamic scene which essentially trivialises the notion of motion estimation as a compulsory step to solve this problem. Conventional geometric methods to address depth estimation requires a reliable estimate of motion parameters for each moving object, which is difficult to obtain and validate. In contrast, this thesis introduces a new motion-free approach to estimate the dense depth map of a complex dynamic scene for successive/multiple frames. The work show that given per-pixel optical flow correspondences between two consecutive frames and the sparse depth prior for the reference frame, we can recover the dense depth map for the successive frames without solving for motion parameters. By assigning the locally rigid structure to the piece-wise planar approximation of a dynamic scene which transforms as rigid as possible over frames, we can bypass the motion estimation step. Experiments results and MATLAB codes on relevant examples are provided to validate the motion-free idea

    A Benchmark and Evaluation of Non-Rigid Structure from Motion

    Full text link
    Non-Rigid structure from motion (NRSfM), is a long standing and central problem in computer vision, allowing us to obtain 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting of data set compiled for this purpose, which is made publicly available, and considerably larger than previous state of the art. To validate the applicability of this data set, and provide and investigation into the state of the art of NRSfM, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 16 different methods with available code, which we argue reasonably spans the state of the art in NRSfM. We also hope, that the presented and public data set and evaluation, will provide benchmark tools for further development in this field

    확률적인 3차원 자세 복원과 행동인식

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 오성회.These days, computer vision technology becomes popular and plays an important role in intelligent systems, such as augment reality, video and image analysis, and to name a few. Although cost effective depth cameras, like a Microsoft Kinect, have recently developed, most computer vision algorithms assume that observations are obtained from RGB cameras, which make 2D observations. If, somehow, we can estimate 3D information from 2D observations, it might give better solutions for many computer vision problems. In this dissertation, we focus on estimating 3D information from 2D observations, which is well known as non-rigid structure from motion (NRSfM). More formally, NRSfM finds the three dimensional structure of an object by analyzing image streams with the assumption that an object lies in a low-dimensional space. However, a human body for long periods of time can have complex shape variations and it makes a challenging problem for NRSfM due to its increased degree of freedom. In order to handle complex shape variations, we propose a Procrustean normal distribution mixture model (PNDMM) by extending a recently proposed Procrustean normal distribution (PND), which captures the distribution of non-rigid variations of an object by excluding the effects of rigid motion. Unlike existing methods which use a single model to solve an NRSfM problem, the proposed PNDMM decomposes complex shape variations into a collection of simpler ones, thereby model learning can be more tractable and accurate. We perform experiments showing that the proposed method outperforms existing methods on highly complex and long human motion sequences. In addition, we extend the PNDMM to a single view 3D human pose estimation problem. While recovering a 3D structure of a human body from an image is important, it is a highly ambiguous problem due to the deformation of an articulated human body. Moreover, before estimating a 3D human pose from a 2D human pose, it is important to obtain an accurate 2D human pose. In order to address inaccuracy of 2D pose estimation on a single image and 3D human pose ambiguities, we estimate multiple 2D and 3D human pose candidates and select the best one which can be explained by a 2D human pose detector and a 3D shape model. We also introduce a model transformation which is incorporated into the 3D shape prior model, such that the proposed method can be applied to a novel test image. Experimental results show that the proposed method can provide good 3D reconstruction results when tested on a novel test image, despite inaccuracies of 2D part detections and 3D shape ambiguities. Finally, we handle an action recognition problem from a video clip. Current studies show that high-level features obtained from estimated 2D human poses enable action recognition performance beyond current state-of-the-art methods using low- and mid-level features based on appearance and motion, despite inaccuracy of human pose estimation. Based on these findings, we propose an action recognition method using estimated 3D human pose information since the proposed PNDMM is able to reconstruct 3D shapes from 2D shapes. Experimental results show that 3D pose based descriptors are better than 2D pose based descriptors for action recognition, regardless of classification methods. Considering the fact that we use simple 3D pose descriptors based on a 3D shape model which is learned from 2D shapes, results reported in this dissertation are promising and obtaining accurate 3D information from 2D observations is still an important research issue for reliable computer vision systems.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Issues 4 1.3 Organization of the Dissertation 6 Chapter 2 Preliminary 9 2.1 Generalized Procrustes Analysis (GPA) 11 2.2 EM-GPA Algorithm 12 2.2.1 Objective function 12 2.2.2 E-step 15 2.2.3 M-step 16 2.3 Implementation Considerations for EM-GPA 18 2.3.1 Preprocessing stage 18 2.3.2 Small update rate for the covariance matrix 20 2.4 Experiments 21 2.4.1 Shape alignment with the missing information 23 2.4.2 3D shape modeling 24 2.4.3 2D+3D active appearance models 28 2.5 Chapter Summary and Discussion 32 Chapter 3 Procrustean Normal Distribution Mixture Model 33 3.1 Non-Rigid Structure from Motion 35 3.2 Procrustean Normal Distribution (PND) 38 3.3 PND Mixture Model 41 3.4 Learning a PNDMM 43 3.4.1 E-step 44 3.4.2 M-step 46 3.5 Learning an Adaptive PNDMM 48 3.6 Experiments 50 3.6.1 Experimental setup 50 3.6.2 CMU Mocap database 53 3.6.3 UMPM dataset 69 3.6.4 Simple and short motions 74 3.6.5 Real sequence - qualitative representation 77 3.7 Chapter Summary 78 Chapter 4 Recovering a 3D Human Pose from a Novel Image 83 4.1 Single View 3D Human Pose Estimation 85 4.2 Candidate Generation 87 4.2.1 Initial pose generation 87 4.2.2 Part recombination 88 4.3 3D Shape Prior Model 89 4.3.1 Procrustean mixture model learning 89 4.3.2 Procrustean mixture model fitting 91 4.4 Model Transformation 92 4.4.1 Model normalization 92 4.4.2 Model adaptation 95 4.5 Result Selection 96 4.6 Experiments 98 4.6.1 Implementation details 98 4.6.2 Evaluation of the joint 2D and 3D pose estimation 99 4.6.3 Evaluation of the 2D pose estimation 104 4.6.4 Evaluation of the 3D pose estimation 106 4.7 Chapter Summary 108 Chapter 5 Application to Action Recognition 109 5.1 Appearance and Motion Based Descriptors 112 5.2 2D Pose Based Descriptors 113 5.3 Bag-of-Features with a Multiple Kernel Method 114 5.4 Classification - Kernel Group Sparse Representation 115 5.4.1 Group sparse representation for classification 116 5.4.2 Kernel group sparse (KGS) representation for classification 118 5.5 Experiment on sub-JHMDB Dataset 120 5.5.1 Experimental setup 120 5.5.2 3D pose based descriptor 122 5.5.3 Experimental results 123 5.6 Chapter Summary 129 Chapter 6 Conclusion and Future Work 131 Appendices 135 A Proof of Propositions in Chapter 2 137 A.1 Proof of Proposition 1 137 A.2 Proof of Proposition 3 138 A.3 Proof of Proposition 4 139 B Calculation of p(XijDii) in Chapter 3 141 B.1 Without the Dirac-delta term 141 B.2 With the Dirac-delta term 142 C Procrustean Mixture Model Learning and Fitting in Chapter 4 145 C.1 Procrustean Mixture Model Learning 145 C.2 Procrustean Mixture Model Fitting 147 Bibliography 153 초 록 167Docto

    Monocular 3d Object Recognition

    Get PDF
    Object recognition is one of the fundamental tasks of computer vision. Recent advances in the field enable reliable 2D detections from a single cluttered image. However, many challenges still remain. Object detection needs timely response for real world applications. Moreover, we are genuinely interested in estimating the 3D pose and shape of an object or human for the sake of robotic manipulation and human-robot interaction. In this thesis, a suite of solutions to these challenges is presented. First, Active Deformable Part Models (ADPM) is proposed for fast part-based object detection. ADPM dramatically accelerates the detection by dynamically scheduling the part evaluations and efficiently pruning the image locations. Second, we unleash the power of marrying discriminative 2D parts with an explicit 3D geometric representation. Several methods of such scheme are proposed for recovering rich 3D information of both rigid and non-rigid objects from monocular RGB images. (1) The accurate 3D pose of an object instance is recovered from cluttered images using only the CAD model. (2) A global optimal solution for simultaneous 2D part localization, 3D pose and shape estimation is obtained by optimizing a unified convex objective function. Both appearance and geometric compatibility are jointly maximized. (3) 3D human pose estimation from an image sequence is realized via an Expectation-Maximization algorithm. The 2D joint location uncertainties are marginalized out during inference and 3D pose smoothness is enforced across frames. By bridging the gap between 2D and 3D, our methods provide an end-to-end solution to 3D object recognition from images. We demonstrate a range of interesting applications using only a single image or a monocular video, including autonomous robotic grasping with a single image, 3D object image pop-up and a monocular human MoCap system. We also show empirical start-of-art results on a number of benchmarks on 2D detection and 3D pose and shape estimation

    From images to augmented 3D models: improved visual SLAM and augmented point cloud modeling

    Get PDF
    This thesis investigates into the problem of using monocular image sequences to generate augmented models. The problem is decomposed to two subproblems: monocular visual simultaneously localization and mapping (VSLAM), and the point cloud data modeling. Accordingly, the thesis comprises two major parts. The First part, including Chapters 2, 3 and 4, aims to leverage the system observability theories to improve the VSLAM accuracy. In Chapter 2, a piece-wise linear system is developed to model VSLAM, and two necessary conditions are proved to make the VSLAM completely observable. Based on the First condition, an instantaneous condition for complete observability, the "Optimally Observable and Minimal Cardinality (OOMC) VSLAM" is presented in Chapter 3. The OOMC algorithm selects the feature subset of minimal required cardinality to form the strongest observable VSLAM subsystem. The select feature subset is further used to improve the data association in VSLAM. Based on the second condition, a temporal condition for complete observability, the "Good Features (GF) to Track for VSLAM" is presented in Chapter 4. The GF algorithm ranks the individual features according to their contributions to system observability. Benchmarking experiments of both OOMC and GF algorithms demonstrate improvements in VSLAM performance. The second part, including Chapters 5 and 6, aims to solve the PCD modeling problem in a geometry-driven manner. Chapter 5 presents an algorithm to model PCDs with planar patches via a sparsity-inducing optimization. Chapter 6 extends the PCD modeling to quadratic surface primitives based models. A method is further developed to retrieve the high-level semantic information of the model components. Evaluation on the PCDs generated from VSLAM demonstrates the effectiveness of these geometry-driven PCD modeling approaches.Ph.D
    corecore