6 research outputs found

    Non-adaptive Group Testing on Graphs

    Full text link
    Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2ud2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(ddu)du(ulogdu+log1ϵ)d2logn)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0 or t=O((du)u(ddu)dud3lognlognd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is t×poly(d2logn)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlogn+nlog1ϵ)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where ϵ>0\epsilon > 0, and O(nulogn)O(n^u \log{n}) for deterministic decoding

    New Constructions for Competitive and Minimal-Adaptive Group Testing

    Get PDF
    Group testing (GT) was originally proposed during the World War II in an attempt to minimize the \emph{cost} and \emph{waiting time} in performing identical blood tests of the soldiers for a low-prevalence disease. Formally, the GT problem asks to find dnd\ll n \emph{defective} elements out of nn elements by querying subsets (pools) for the presence of defectives. By the information-theoretic lower bound, essentially dlog2nd\log_2 n queries are needed in the worst-case. An \emph{adaptive} strategy proceeds sequentially by performing one query at a time, and it can achieve the lower bound. In various applications, nothing is known about dd beforehand and a strategy for this scenario is called \emph{competitive}. Such strategies are usually adaptive and achieve query optimality within a constant factor called the \emph{competitive ratio}. In many applications, queries are time-consuming. Therefore, \emph{minimal-adaptive} strategies which run in a small number ss of stages of parallel queries are favorable. This work is mainly devoted to the design of minimal-adaptive strategies combined with other demands of both theoretical and practical interest. First we target unknown dd and show that actually competitive GT is possible in as few as 22 stages only. The main ingredient is our randomized estimate of a previously unknown dd using nonadaptive queries. In addition, we have developed a systematic approach to obtain optimal competitive ratios for our strategies. When dd is a known upper bound, we propose randomized GT strategies which asymptotically achieve query optimality in just 22, 33 or 44 stages depending upon the growth of dd versus nn. Inspired by application settings, such as at American Red Cross, where in most cases GT is applied to small instances, \textit{e.g.}, n=16n=16. We extended our study of query-optimal GT strategies to solve a given problem instance with fixed values nn, dd and ss. We also considered the situation when elements to test cannot be divided physically (electronic devices), thus the pools must be disjoint. For GT with \emph{disjoint} simultaneous pools, we show that Θ(sd(n/d)1/s)\Theta (sd(n/d)^{1/s}) tests are sufficient, and also necessary for certain ranges of the parameters

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi
    corecore