59,346 research outputs found

    A perturbative approach to the reconstruction of the eigenvalue spectrum of a normal covariance matrix from a spherically truncated counterpart

    Full text link
    In this paper we propose a perturbative method for the reconstruction of the covariance matrix of a multinormal distribution, under the assumption that the only available information amounts to the covariance matrix of a spherically truncated counterpart of the same distribution. We expand the relevant equations up to the fourth perturbative order and discuss the analytic properties of the first few perturbative terms. We finally compare the proposed approach with an exact iterative algorithm (presented in Palombi et al. (2017)) in the hypothesis that the spherically truncated covariance matrix is estimated from samples of various sizes.Comment: 39 pages, 7 figures. v2: version accepted for publication in J. Comp. Appl. Mat

    Shape Generation using Spatially Partitioned Point Clouds

    Full text link
    We propose a method to generate 3D shapes using point clouds. Given a point-cloud representation of a 3D shape, our method builds a kd-tree to spatially partition the points. This orders them consistently across all shapes, resulting in reasonably good correspondences across all shapes. We then use PCA analysis to derive a linear shape basis across the spatially partitioned points, and optimize the point ordering by iteratively minimizing the PCA reconstruction error. Even with the spatial sorting, the point clouds are inherently noisy and the resulting distribution over the shape coefficients can be highly multi-modal. We propose to use the expressive power of neural networks to learn a distribution over the shape coefficients in a generative-adversarial framework. Compared to 3D shape generative models trained on voxel-representations, our point-based method is considerably more light-weight and scalable, with little loss of quality. It also outperforms simpler linear factor models such as Probabilistic PCA, both qualitatively and quantitatively, on a number of categories from the ShapeNet dataset. Furthermore, our method can easily incorporate other point attributes such as normal and color information, an additional advantage over voxel-based representations.Comment: To appear at BMVC 201

    Recognizing Partial Cubes in Quadratic Time

    Full text link
    We show how to test whether a graph with n vertices and m edges is a partial cube, and if so how to find a distance-preserving embedding of the graph into a hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time solutions.Comment: 25 pages, five figures. This version significantly expands previous versions, including a new report on an implementation of the algorithm and experiments with i
    • …
    corecore