633,947 research outputs found

    Accuracy of spike-train Fourier reconstruction for colliding nodes

    Full text link
    We consider Fourier reconstruction problem for signals F, which are linear combinations of shifted delta-functions. We assume the Fourier transform of F to be known on the frequency interval [-N,N], with an absolute error not exceeding e > 0. We give an absolute lower bound (which is valid with any reconstruction method) for the "worst case" reconstruction error of F in situations where the nodes (i.e. the positions of the shifted delta-functions in F) are known to form an l elements cluster of a size h << 1. Using "decimation" reconstruction algorithm we provide an upper bound for the reconstruction error, essentially of the same form as the lower one. Roughly, our main result states that for N*h of order of (2l-1)-st root of e the worst case reconstruction error of the cluster nodes is of the same order as h, and hence the inside configuration of the cluster nodes (in the worst case scenario) cannot be reconstructed at all. On the other hand, decimation algorithm reconstructs F with the accuracy of order of 2l-st root of e

    Feedback Acquisition and Reconstruction of Spectrum-Sparse Signals by Predictive Level Comparisons

    Full text link
    In this letter, we propose a sparsity promoting feedback acquisition and reconstruction scheme for sensing, encoding and subsequent reconstruction of spectrally sparse signals. In the proposed scheme, the spectral components are estimated utilizing a sparsity-promoting, sliding-window algorithm in a feedback loop. Utilizing the estimated spectral components, a level signal is predicted and sign measurements of the prediction error are acquired. The sparsity promoting algorithm can then estimate the spectral components iteratively from the sign measurements. Unlike many batch-based Compressive Sensing (CS) algorithms, our proposed algorithm gradually estimates and follows slow changes in the sparse components utilizing a sliding-window technique. We also consider the scenario in which possible flipping errors in the sign bits propagate along iterations (due to the feedback loop) during reconstruction. We propose an iterative error correction algorithm to cope with this error propagation phenomenon considering a binary-sparse occurrence model on the error sequence. Simulation results show effective performance of the proposed scheme in comparison with the literature

    An RIP-based approach to ΣΔ\Sigma\Delta quantization for compressed sensing

    Full text link
    In this paper, we provide a new approach to estimating the error of reconstruction from ΣΔ\Sigma\Delta quantized compressed sensing measurements. Our method is based on the restricted isometry property (RIP) of a certain projection of the measurement matrix. Our result yields simple proofs and a slight generalization of the best-known reconstruction error bounds for Gaussian and subgaussian measurement matrices.Comment: 11 page
    corecore