633,947 research outputs found
Accuracy of spike-train Fourier reconstruction for colliding nodes
We consider Fourier reconstruction problem for signals F, which are linear
combinations of shifted delta-functions. We assume the Fourier transform of F
to be known on the frequency interval [-N,N], with an absolute error not
exceeding e > 0. We give an absolute lower bound (which is valid with any
reconstruction method) for the "worst case" reconstruction error of F in
situations where the nodes (i.e. the positions of the shifted delta-functions
in F) are known to form an l elements cluster of a size h << 1. Using
"decimation" reconstruction algorithm we provide an upper bound for the
reconstruction error, essentially of the same form as the lower one. Roughly,
our main result states that for N*h of order of (2l-1)-st root of e the worst
case reconstruction error of the cluster nodes is of the same order as h, and
hence the inside configuration of the cluster nodes (in the worst case
scenario) cannot be reconstructed at all. On the other hand, decimation
algorithm reconstructs F with the accuracy of order of 2l-st root of e
Feedback Acquisition and Reconstruction of Spectrum-Sparse Signals by Predictive Level Comparisons
In this letter, we propose a sparsity promoting feedback acquisition and
reconstruction scheme for sensing, encoding and subsequent reconstruction of
spectrally sparse signals. In the proposed scheme, the spectral components are
estimated utilizing a sparsity-promoting, sliding-window algorithm in a
feedback loop. Utilizing the estimated spectral components, a level signal is
predicted and sign measurements of the prediction error are acquired. The
sparsity promoting algorithm can then estimate the spectral components
iteratively from the sign measurements. Unlike many batch-based Compressive
Sensing (CS) algorithms, our proposed algorithm gradually estimates and follows
slow changes in the sparse components utilizing a sliding-window technique. We
also consider the scenario in which possible flipping errors in the sign bits
propagate along iterations (due to the feedback loop) during reconstruction. We
propose an iterative error correction algorithm to cope with this error
propagation phenomenon considering a binary-sparse occurrence model on the
error sequence. Simulation results show effective performance of the proposed
scheme in comparison with the literature
An RIP-based approach to quantization for compressed sensing
In this paper, we provide a new approach to estimating the error of
reconstruction from quantized compressed sensing measurements.
Our method is based on the restricted isometry property (RIP) of a certain
projection of the measurement matrix.
Our result yields simple proofs and a slight generalization of the best-known
reconstruction error bounds for Gaussian and subgaussian measurement matrices.Comment: 11 page
- …
