354,730 research outputs found

    Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    Full text link
    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications

    Method for Assessing the Fidelity of Optical Diffraction Tomography Reconstruction Methods

    Full text link
    We use a spatial light modulator in a diffraction tomographic system to assess the accuracy of different refractive index reconstruction algorithms. Optical phase conjugation principles through complex media, allows us to quantify the error for different refractive index reconstruction algorithms without access to the ground truth. To our knowledge, this is the first assessment technique that uses structured illumination experimentally to test the accuracy of different reconstruction schemes.Comment: 11 PAGES, 6 FIGURE

    Tau tagging at Atlas and CMS

    Full text link
    The tau identification and reconstruction algorithms developed for the LHC experiments Atlas and CMS are presented. Reconstruction methods suitable for use at High Level Trigger and off-line are described in detailComment: Presented at HCP200

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic
    corecore