354,730 research outputs found
Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography
Iterative image reconstruction algorithms for optoacoustic tomography (OAT),
also known as photoacoustic tomography, have the ability to improve image
quality over analytic algorithms due to their ability to incorporate accurate
models of the imaging physics, instrument response, and measurement noise.
However, to date, there have been few reported attempts to employ advanced
iterative image reconstruction algorithms for improving image quality in
three-dimensional (3D) OAT. In this work, we implement and investigate two
iterative image reconstruction methods for use with a 3D OAT small animal
imager: namely, a penalized least-squares (PLS) method employing a quadratic
smoothness penalty and a PLS method employing a total variation norm penalty.
The reconstruction algorithms employ accurate models of the ultrasonic
transducer impulse responses. Experimental data sets are employed to compare
the performances of the iterative reconstruction algorithms to that of a 3D
filtered backprojection (FBP) algorithm. By use of quantitative measures of
image quality, we demonstrate that the iterative reconstruction algorithms can
mitigate image artifacts and preserve spatial resolution more effectively than
FBP algorithms. These features suggest that the use of advanced image
reconstruction algorithms can improve the effectiveness of 3D OAT while
reducing the amount of data required for biomedical applications
Method for Assessing the Fidelity of Optical Diffraction Tomography Reconstruction Methods
We use a spatial light modulator in a diffraction tomographic system to
assess the accuracy of different refractive index reconstruction algorithms.
Optical phase conjugation principles through complex media, allows us to
quantify the error for different refractive index reconstruction algorithms
without access to the ground truth. To our knowledge, this is the first
assessment technique that uses structured illumination experimentally to test
the accuracy of different reconstruction schemes.Comment: 11 PAGES, 6 FIGURE
Tau tagging at Atlas and CMS
The tau identification and reconstruction algorithms developed for the LHC
experiments Atlas and CMS are presented. Reconstruction methods suitable for
use at High Level Trigger and off-line are described in detailComment: Presented at HCP200
Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems
Recent results in telecardiology show that compressed sensing (CS) is a
promising tool to lower energy consumption in wireless body area networks for
electrocardiogram (ECG) monitoring. However, the performance of current
CS-based algorithms, in terms of compression rate and reconstruction quality of
the ECG, still falls short of the performance attained by state-of-the-art
wavelet based algorithms. In this paper, we propose to exploit the structure of
the wavelet representation of the ECG signal to boost the performance of
CS-based methods for compression and reconstruction of ECG signals. More
precisely, we incorporate prior information about the wavelet dependencies
across scales into the reconstruction algorithms and exploit the high fraction
of common support of the wavelet coefficients of consecutive ECG segments.
Experimental results utilizing the MIT-BIH Arrhythmia Database show that
significant performance gains, in terms of compression rate and reconstruction
quality, can be obtained by the proposed algorithms compared to current
CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health
Informatic
- …
