852 research outputs found

    Subspace Methods for Joint Sparse Recovery

    Full text link
    We propose robust and efficient algorithms for the joint sparse recovery problem in compressed sensing, which simultaneously recover the supports of jointly sparse signals from their multiple measurement vectors obtained through a common sensing matrix. In a favorable situation, the unknown matrix, which consists of the jointly sparse signals, has linearly independent nonzero rows. In this case, the MUSIC (MUltiple SIgnal Classification) algorithm, originally proposed by Schmidt for the direction of arrival problem in sensor array processing and later proposed and analyzed for joint sparse recovery by Feng and Bresler, provides a guarantee with the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank-defect or ill-conditioning. This situation arises with limited number of measurement vectors, or with highly correlated signal components. In this case MUSIC fails, and in practice none of the existing methods can consistently approach the fundamental limit. We propose subspace-augmented MUSIC (SA-MUSIC), which improves on MUSIC so that the support is reliably recovered under such unfavorable conditions. Combined with subspace-based greedy algorithms also proposed and analyzed in this paper, SA-MUSIC provides a computationally efficient algorithm with a performance guarantee. The performance guarantees are given in terms of a version of restricted isometry property. In particular, we also present a non-asymptotic perturbation analysis of the signal subspace estimation that has been missing in the previous study of MUSIC.Comment: submitted to IEEE transactions on Information Theory, revised versio

    CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    Full text link
    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \cite{Dong2013X} and that of the data-driven tight frames for image denoising \cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \cite{Dong2013X} especially in recovering some subtle structures in the images

    Lorentzian Iterative Hard Thresholding: Robust Compressed Sensing with Prior Information

    Full text link
    Commonly employed reconstruction algorithms in compressed sensing (CS) use the L2L_2 norm as the metric for the residual error. However, it is well-known that least squares (LS) based estimators are highly sensitive to outliers present in the measurement vector leading to a poor performance when the noise no longer follows the Gaussian assumption but, instead, is better characterized by heavier-than-Gaussian tailed distributions. In this paper, we propose a robust iterative hard Thresholding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the L2L_2 cost function employed by the traditional IHT algorithm. We also modify the algorithm to incorporate prior signal information in the recovery process. Specifically, we study the case of CS with partially known support. The proposed algorithm is a fast method with computational load comparable to the LS based IHT, whilst having the advantage of robustness against heavy-tailed impulsive noise. Sufficient conditions for stability are studied and a reconstruction error bound is derived. We also derive sufficient conditions for stable sparse signal recovery with partially known support. Theoretical analysis shows that including prior support information relaxes the conditions for successful reconstruction. Simulation results demonstrate that the Lorentzian-based IHT algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable performance in less demanding, light-tailed environments. Numerical results also demonstrate that the partially known support inclusion improves the performance of the proposed algorithm, thereby requiring fewer samples to yield an approximate reconstruction.Comment: 28 pages, 9 figures, accepted in IEEE Transactions on Signal Processin

    A spin glass model for reconstructing nonlinearly encrypted signals corrupted by noise

    Get PDF
    An encryption of a signal sRN{\bf s}\in\mathbb{R^N} is a random mapping sy=(y1,,yM)TRM{\bf s}\mapsto \textbf{y}=(y_1,\ldots,y_M)^T\in \mathbb{R}^M which can be corrupted by an additive noise. Given the Encryption Redundancy Parameter (ERP) μ=M/N1\mu=M/N\ge 1, the signal strength parameter R=isi2/NR=\sqrt{\sum_i s_i^2/N}, and the ('bare') noise-to-signal ratio (NSR) γ0\gamma\ge 0, we consider the problem of reconstructing s{\bf s} from its corrupted image by a Least Square Scheme for a certain class of random Gaussian mappings. The problem is equivalent to finding the configuration of minimal energy in a certain version of spherical spin glass model, with squared Gaussian-distributed random potential. We use the Parisi replica symmetry breaking scheme to evaluate the mean overlap p[0,1]p_{\infty}\in [0,1] between the original signal and its recovered image (known as 'estimator') as NN\to \infty, which is a measure of the quality of the signal reconstruction. We explicitly analyze the general case of linear-quadratic family of random mappings and discuss the full p(γ)p_{\infty} (\gamma) curve. When nonlinearity exceeds a certain threshold but redundancy is not yet too big, the replica symmetric solution is necessarily broken in some interval of NSR. We show that encryptions with a nonvanishing linear component permit reconstructions with p>0p_{\infty}>0 for any μ>1\mu>1 and any γ<\gamma<\infty, with pγ1/2p_{\infty}\sim \gamma^{-1/2} as γ\gamma\to \infty. In contrast, for the case of purely quadratic nonlinearity, for any ERP μ>1\mu>1 there exists a threshold NSR value γc(μ)\gamma_c(\mu) such that p=0p_{\infty}=0 for γ>γc(μ)\gamma>\gamma_c(\mu) making the reconstruction impossible. The behaviour close to the threshold is given by p(γcγ)3/4p_{\infty}\sim (\gamma_c-\gamma)^{3/4} and is controlled by the replica symmetry breaking mechanism.Comment: 33 pages, 5 figure

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure
    corecore