2,406 research outputs found

    Polynomial time algorithms for multicast network code construction

    Get PDF
    The famous max-flow min-cut theorem states that a source node s can send information through a network (V, E) to a sink node t at a rate determined by the min-cut separating s and t. Recently, it has been shown that this rate can also be achieved for multicasting to several sinks provided that the intermediate nodes are allowed to re-encode the information they receive. We demonstrate examples of networks where the achievable rates obtained by coding at intermediate nodes are arbitrarily larger than if coding is not allowed. We give deterministic polynomial time algorithms and even faster randomized algorithms for designing linear codes for directed acyclic graphs with edges of unit capacity. We extend these algorithms to integer capacities and to codes that are tolerant to edge failures

    Reconstructing Generalized Staircase Polygons with Uniform Step Length

    Full text link
    Visibility graph reconstruction, which asks us to construct a polygon that has a given visibility graph, is a fundamental problem with unknown complexity (although visibility graph recognition is known to be in PSPACE). We show that two classes of uniform step length polygons can be reconstructed efficiently by finding and removing rectangles formed between consecutive convex boundary vertices called tabs. In particular, we give an O(n2m)O(n^2m)-time reconstruction algorithm for orthogonally convex polygons, where nn and mm are the number of vertices and edges in the visibility graph, respectively. We further show that reconstructing a monotone chain of staircases (a histogram) is fixed-parameter tractable, when parameterized on the number of tabs, and polynomially solvable in time O(n2m)O(n^2m) under reasonable alignment restrictions.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Reconstructing a phylogenetic level-1 network from quartets

    Get PDF
    We describe a method that will reconstruct an unrooted binary phylogenetic level-1 network on n taxa from the set of all quartets containing a certain fixed taxon, in O(n^3) time. We also present a more general method which can handle more diverse quartet data, but which takes O(n^6) time. Both methods proceed by solving a certain system of linear equations over GF(2). For a general dense quartet set (containing at least one quartet on every four taxa) our O(n^6) algorithm constructs a phylogenetic level-1 network consistent with the quartet set if such a network exists and returns an (O(n^2) sized) certificate of inconsistency otherwise. This answers a question raised by Gambette, Berry and Paul regarding the complexity of reconstructing a level-1 network from a dense quartet set
    • …
    corecore