8,678 research outputs found

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor

    Learning loopy graphical models with latent variables: Efficient methods and guarantees

    Get PDF
    The problem of structure estimation in graphical models with latent variables is considered. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider models where the underlying Markov graph is locally tree-like, and the model is in the regime of correlation decay. For the special case of the Ising model, the number of samples nn required for structural consistency of our method scales as n=Ω(θminδη(η+1)2logp)n=\Omega(\theta_{\min}^{-\delta\eta(\eta+1)-2}\log p), where p is the number of variables, θmin\theta_{\min} is the minimum edge potential, δ\delta is the depth (i.e., distance from a hidden node to the nearest observed nodes), and η\eta is a parameter which depends on the bounds on node and edge potentials in the Ising model. Necessary conditions for structural consistency under any algorithm are derived and our method nearly matches the lower bound on sample requirements. Further, the proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1070 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore