3 research outputs found

    Towards Reconfigurable Intelligent Surfaces Powered Green Wireless Networks

    Full text link
    The adoption of reconfigurable intelligent surface (RIS) in wireless networks can enhance the spectrum- and energy-efficiency by controlling the propagation environment. Although the RIS does not consume any transmit power, the circuit power of the RIS cannot be ignored, especially when the number of reflecting elements is large. In this paper, we propose the joint design of beamforming vectors at the base station, active RIS set, and phase-shift matrices at the active RISs to minimize the network power consumption, including the RIS circuit power consumption, while taking into account each user's target data rate requirement and each reflecting element's constant modulus constraint. However, the formulated problem is a mixed-integer quadratic programming (MIQP) problem, which is NP-hard. To this end, we present an alternating optimization method, which alternately solves second order cone programming (SOCP) and MIQP problems to update the optimization variables. Specifically, the MIQP problem is further transformed into a semidefinite programming problem by applying binary relaxation and semidefinite relaxation. Finally, an efficient algorithm is developed to solve the problem. Simulation results show that the proposed algorithm significantly reduces the network power consumption and reveal the importance of taking into account the RIS circuit power consumption.Comment: Accepted by IEEE Wireless Communications and Networking Conference (WCNC) 202

    Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with Heterogeneous Learning Tasks

    Full text link
    The ever-growing popularity and rapid improving of artificial intelligence (AI) have raised rethinking on the evolution of wireless networks. Mobile edge computing (MEC) provides a natural platform for AI applications since it is with rich computation resources to train machine learning (ML) models, as well as low-latency access to the data generated by mobile and internet of things (IoT) devices. In this paper, we present an infrastructure to perform ML tasks at an MEC server with the assistance of a reconfigurable intelligent surface (RIS). In contrast to conventional communication systems where the principal criterions are to maximize the throughput, we aim at maximizing the learning performance. Specifically, we minimize the maximum learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station (BS), and the phase-shift matrix of the RIS. An alternating optimization (AO)-based framework is proposed to optimize the three terms iteratively, where a successive convex approximation (SCA)-based algorithm is developed to solve the power allocation problem, closed-form expressions of the beamforming vectors are derived, and an alternating direction method of multipliers (ADMM)-based algorithm is designed together with an error level searching (ELS) framework to effectively solve the challenging nonconvex optimization problem of the phase-shift matrix. Simulation results demonstrate significant gains of deploying an RIS and validate the advantages of our proposed algorithms over various benchmarks. Lastly, a unified communication-training-inference platform is developed based on the CARLA platform and the SECOND network, and a use case (3D object detection in autonomous driving) for the proposed scheme is demonstrated on the developed platform.Comment: 30 pages, 8 figures, submitted to IEEE Transactions on Cognitive Communications and Networkin

    Reconfigurable Intelligent Surface for Green Edge Inference

    Full text link
    Reconfigurable intelligent surface (RIS) as an emerging cost-effective technology can enhance the spectrum- and energy-efficiency of wireless networks. In this paper, we consider an RIS-aided green edge inference system, where the inference tasks generated from resource-limited mobile devices (MDs) are uploaded to and cooperatively performed at multiple resource-enhanced base stations (BSs). Taking into account both the computation and uplink/downlink transmit power consumption, we formulate an overall network power consumption minimization problem, which calls for the joint design of the set of tasks performed by each BS, transmit and receive beamforming vectors of the BSs, transmit power of the MDs, and uplink/downlink phase-shift matrices at the RIS. Such a problem is a mixed combinatorial optimization problem with nonconvex constraints and is highly intractable. To address the challenge of the combinatorial objective, a group sparse reformulation is proposed by exploiting the group sparsity structure of the beamforming vectors, while a block-structured optimization (BSO) approach is proposed to decouple the optimization variables. Finally, we propose a BSO with mixed โ„“1,2\ell_{1,2}-norm and difference-of-convex-functions (DC) based three-stage framework to solve the problem, where the mixed โ„“1,2\ell_{1,2}-norm is adopted to induce the group sparsity of beamforming vectors and DC is adopted to effectively handle the nonconvex rank-one constraint after matrix lifting. Numerical results demonstrate the supreme gain of deploying an RIS and confirm the effectiveness of the proposed algorithm over the baseline algorithms.Comment: This is the first attempt to unify beamforming vectors, transmit power, and phase shifts design in both the uplink and downlink transmissions into a general framework. This work will be submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore