172 research outputs found

    Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs

    Full text link
    Future Connected and Automated Vehicles (CAVs) will be supervised by cloud-based systems overseeing the overall security and orchestrating traffic flows. Such systems rely on data collected from CAVs across the whole city operational area. This paper develops a Fog Computing-based infrastructure for future Intelligent Transportation Systems (ITSs) enabling an agile and reliable off-load of CAV data. Since CAVs are expected to generate large quantities of data, it is not feasible to assume data off-loading to be completed while a CAV is in the proximity of a single Road-Side Unit (RSU). CAVs are expected to be in the range of an RSU only for a limited amount of time, necessitating data reconciliation across different RSUs, if traditional approaches to data off-load were to be used. To this end, this paper proposes an agile Fog Computing infrastructure, which interconnects all the RSUs so that the data reconciliation is solved efficiently as a by-product of deploying the Random Linear Network Coding (RLNC) technique. Our numerical results confirm the feasibility of our solution and show its effectiveness when operated in a large-scale urban testbed.Comment: To appear in IEEE VTC-Spring 201

    Towards 5G Software-Defined Ecosystems: Technical Challenges, Business Sustainability and Policy Issues

    Get PDF
    Techno-economic drivers are creating the conditions for a radical change of paradigm in the design and operation of future telecommunications infrastructures. In fact, SDN, NFV, Cloud and Edge-Fog Computing are converging together into a single systemic transformation termed “Softwarization” that will find concrete exploitations in 5G systems. The IEEE SDN Initiative1 has elaborated a vision, an evolutionary path and some techno-economic scenarios of this transformation: specifically, the major technical challenges, business sustainability and policy issues have been investigated. This white paper presents: 1) an overview on the main techno-economic drivers steering the “Softwarization” of telecommunications; 2) an introduction to the Open Mobile Edge Cloud vision (covered in a companion white paper); 3) the main technical challenges in terms of operations, security and policy; 4) an analysis of the potential role of open source software; 5) some use case proposals for proof-of-concepts; and 6) a short description of the main socio-economic impacts being produced by “Softwarization”. Along these directions, IEEE SDN is also developing of an open catalogue of software platforms, toolkits, and functionalities aiming at a step-by-step development and aggregation of test-beds/field-trials on SDNNFV- 5G

    Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases

    Get PDF
    Most proteins assume different conformations to perform their cellular functions. This conformational dynamics is physiologically regulated by binding events and post-translational modifications, but can also be affected by pathogenic mutations. Atomistic molecular dynamics simulations complemented by enhanced sampling approaches are increasingly used to probe the effect of mutations on the conformational dynamics and on the underlying conformational free energy landscape of proteins. In this short review we discuss recent successful examples of simulations used to understand the molecular mechanism underlying the deregulation of physiological conformational dynamics due to non-synonymous single point mutations. Our examples are mostly drawn from the protein kinase family

    Can Software Routers Scale?

    Get PDF
    Software routers can lead us from a network of special-purpose hardware routers to one of general-purpose extensible infrastructure--if, that is, they can scale to high speeds. We identify the challenges in achieving this scalability and propose a solution: a cluster-based router architecture that uses an interconnect of commodity server platforms to build software routers that are both incrementally scalable and fully programmable

    Building out the Crypto Economy in Europe: a Proposal for Central Bank Digital Euros

    Get PDF
    The “decentralised applications” (dApp) economy is an innovative and exciting business space that is creating economic value. The recognition of its needs such as fund-raising is only emerging in the EU Digital Finance Package supporting the new action plan for the Capital Markets Union. This article proposes that policymakers could play a further facilitative role in mobilising this economic space by considering the integration of the central bank digital euro with the dApp economy. This initiative addresses the weaknesses of the monetary order in the dApp economy and provides a departure point for the building out of the dApp economy by more enabling regulatory institutions and architecture, consistent with a vision of regulatory capitalism supporting financial and enterprise development

    Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs

    Get PDF
    Future Connected and Automated Vehicles (CAVs) will be supervised by cloud-based systems overseeing the overall security and orchestrating traffic flows. Such systems rely on data collected from CAVs across the whole city operational area. This paper develops a Fog Computing-based infrastructure for future Intelligent Transportation Systems (ITSs) enabling an agile and reliable off-load of CAV data. Since CAVs are expected to generate large quantities of data, it is not feasible to assume data off-loading to be completed while a CAV is in the proximity of a single Road-Side Unit (RSU). CAVs are expected to be in the range of an RSU only for a limited amount of time, necessitating data reconciliation across different RSUs, if traditional approaches to data off-load were to be used. To this end, this paper proposes an agile Fog Computing infrastructure, which interconnects all the RSUs so that the data reconciliation is solved efficiently as a by-product of deploying the Random Linear Network Coding (RLNC) technique. Our numerical results confirm the feasibility of our solution and show its effectiveness when operated in a large-scale urban testbed.Comment: To appear in IEEE VTC-Spring 201
    • …
    corecore