19,242 research outputs found

    Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching

    Full text link
    Caching popular content at the edge of future mobile networks has been widely considered in order to alleviate the impact of the data tsunami on both the access and backhaul networks. A number of interesting techniques have been proposed, including femto-caching and "delayed" or opportunistic cache access. Nevertheless, the majority of these approaches suffer from the rather limited storage capacity of the edge caches, compared to the tremendous and rapidly increasing size of the Internet content catalog. We propose to depart from the assumption of hard cache misses, common in most existing works, and consider "soft" cache misses, where if the original content is not available, an alternative content that is locally cached can be recommended. Given that Internet content consumption is increasingly entertainment-oriented, we believe that a related content could often lead to complete or at least partial user satisfaction, without the need to retrieve the original content over expensive links. In this paper, we formulate the problem of optimal edge caching with soft cache hits, in the context of delayed access, and analyze the expected gains. We then show using synthetic and real datasets of related video contents that promising caching gains could be achieved in practice

    Exploiting synergy between ontologies and recommender systems

    Get PDF
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Exploiting Synergy Between Ontologies and Recommender Systems

    No full text
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Hoodsquare: Modeling and Recommending Neighborhoods in Location-based Social Networks

    Full text link
    Information garnered from activity on location-based social networks can be harnessed to characterize urban spaces and organize them into neighborhoods. In this work, we adopt a data-driven approach to the identification and modeling of urban neighborhoods using location-based social networks. We represent geographic points in the city using spatio-temporal information about Foursquare user check-ins and semantic information about places, with the goal of developing features to input into a novel neighborhood detection algorithm. The algorithm first employs a similarity metric that assesses the homogeneity of a geographic area, and then with a simple mechanism of geographic navigation, it detects the boundaries of a city's neighborhoods. The models and algorithms devised are subsequently integrated into a publicly available, map-based tool named Hoodsquare that allows users to explore activities and neighborhoods in cities around the world. Finally, we evaluate Hoodsquare in the context of a recommendation application where user profiles are matched to urban neighborhoods. By comparing with a number of baselines, we demonstrate how Hoodsquare can be used to accurately predict the home neighborhood of Twitter users. We also show that we are able to suggest neighborhoods geographically constrained in size, a desirable property in mobile recommendation scenarios for which geographical precision is key.Comment: ASE/IEEE SocialCom 201

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Scaling of city attractiveness for foreign visitors through big data of human economical and social media activity

    Full text link
    Scientific studies investigating laws and regularities of human behavior are nowadays increasingly relying on the wealth of widely available digital information produced by human social activity. In this paper we leverage big data created by three different aspects of human activity (i.e., bank card transactions, geotagged photographs and tweets) in Spain for quantifying city attractiveness for the foreign visitors. An important finding of this papers is a strong superlinear scaling of city attractiveness with its population size. The observed scaling exponent stays nearly the same for different ways of defining cities and for different data sources, emphasizing the robustness of our finding. Temporal variation of the scaling exponent is also considered in order to reveal seasonal patterns in the attractivenessComment: 8 pages, 3 figures, 1 tabl
    • …
    corecore