2,483 research outputs found

    Validation of a recommender system for prompting omitted foods in online dietary assessment surveys

    Full text link
    Recall assistance methods are among the key aspects that improve the accuracy of online dietary assessment surveys. These methods still mainly rely on experience of trained interviewers with nutritional background, but data driven approaches could improve cost-efficiency and scalability of automated dietary assessment. We evaluated the effectiveness of a recommender algorithm developed for an online dietary assessment system called Intake24, that automates the multiple-pass 24-hour recall method. The recommender builds a model of eating behavior from recalls collected in past surveys. Based on foods they have already selected, the model is used to remind respondents of associated foods that they may have omitted to report. The performance of prompts generated by the model was compared to that of prompts hand-coded by nutritionists in two dietary studies. The results of our studies demonstrate that the recommender system is able to capture a higher number of foods omitted by respondents of online dietary surveys than prompts hand-coded by nutritionists. However, the considerably lower precision of generated prompts indicates an opportunity for further improvement of the system

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs

    Entity Personalized Talent Search Models with Tree Interaction Features

    Full text link
    Talent Search systems aim to recommend potential candidates who are a good match to the hiring needs of a recruiter expressed in terms of the recruiter's search query or job posting. Past work in this domain has focused on linear and nonlinear models which lack preference personalization in the user-level due to being trained only with globally collected recruiter activity data. In this paper, we propose an entity-personalized Talent Search model which utilizes a combination of generalized linear mixed (GLMix) models and gradient boosted decision tree (GBDT) models, and provides personalized talent recommendations using nonlinear tree interaction features generated by the GBDT. We also present the offline and online system architecture for the productionization of this hybrid model approach in our Talent Search systems. Finally, we provide offline and online experiment results benchmarking our entity-personalized model with tree interaction features, which demonstrate significant improvements in our precision metrics compared to globally trained non-personalized models.Comment: This paper has been accepted for publication at ACM WWW 201

    Effective Retrieval of Resources in Folksonomies Using a New Tag Similarity Measure

    Full text link
    Social (or folksonomic) tagging has become a very popular way to describe content within Web 2.0 websites. However, as tags are informally defined, continually changing, and ungoverned, it has often been criticised for lowering, rather than increasing, the efficiency of searching. To address this issue, a variety of approaches have been proposed that recommend users what tags to use, both when labeling and when looking for resources. These techniques work well in dense folksonomies, but they fail to do so when tag usage exhibits a power law distribution, as it often happens in real-life folksonomies. To tackle this issue, we propose an approach that induces the creation of a dense folksonomy, in a fully automatic and transparent way: when users label resources, an innovative tag similarity metric is deployed, so to enrich the chosen tag set with related tags already present in the folksonomy. The proposed metric, which represents the core of our approach, is based on the mutual reinforcement principle. Our experimental evaluation proves that the accuracy and coverage of searches guaranteed by our metric are higher than those achieved by applying classical metrics.Comment: 6 pages, 2 figures, CIKM 2011: 20th ACM Conference on Information and Knowledge Managemen

    Building a Course Recommender System for The College of Wooster

    Get PDF
    The goal of this project is to investigate the approaches for building recommender systems and to apply them to implement a course recommender system for the College of Wooster. There are three main objectives of this project. The first is to understand the mathematics and computer science aspects behind it. The mathematic concepts built into this project include probability, statistics and linear algebra. The final product is consist of two components: a collection of Python scripts containing the implementation code of the course recommender system, and a simple user interface allowing people to use the recommender system without typing commands. The second goal is to analyze the pros and cons of different approaches by comparing their performance on the same training data set which have information about students and courses at the college in the last seven years. The final goal is to apply the best model to build the course recommender system that can provide helpful and personalized course recommendations to students

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table
    corecore