3 research outputs found

    The Technological Gap Between Virtual Assistants and Recommendation Systems

    Full text link
    Virtual assistants, also known as intelligent conversational systems such as Google's Virtual Assistant and Apple's Siri, interact with human-like responses to users' queries and finish specific tasks. Meanwhile, existing recommendation technologies model users' evolving, diverse and multi-aspect preferences to generate recommendations in various domains/applications, aiming to improve the citizens' daily life by making suggestions. The repertoire of actions is no longer limited to the one-shot presentation of recommendation lists, which can be insufficient when the goal is to offer decision support for the user, by quickly adapting to his/her preferences through conversations. Such an interactive mechanism is currently missing from recommendation systems. This article sheds light on the gap between virtual assistants and recommendation systems in terms of different technological aspects. In particular, we try to answer the most fundamental research question, which are the missing technological factors to implement a personalized intelligent conversational agent for producing accurate recommendations while taking into account how users behave under different conditions. The goal is, instead of adapting humans to machines, to actually provide users with better recommendation services so that machines will be adapted to humans in daily life.Comment: 6 pages, Repor

    Leveraging Trust and Distrust in Recommender Systems via Deep Learning

    Full text link
    The data scarcity of user preferences and the cold-start problem often appear in real-world applications and limit the recommendation accuracy of collaborative filtering strategies. Leveraging the selections of social friends and foes can efficiently face both problems. In this study, we propose a strategy that performs social deep pairwise learning. Firstly, we design a ranking loss function incorporating multiple ranking criteria based on the choice in users, and the choice in their friends and foes to improve the accuracy in the top-k recommendation task. We capture the nonlinear correlations between user preferences and the social information of trust and distrust relationships via a deep learning strategy. In each backpropagation step, we follow a social negative sampling strategy to meet the multiple ranking criteria of our ranking loss function. We conduct comprehensive experiments on a benchmark dataset from Epinions, among the largest publicly available that has been reported in the relevant literature. The experimental results demonstrate that the proposed model beats other state-of-the art methods, attaining an 11.49% average improvement over the most competitive model. We show that our deep learning strategy plays an important role in capturing the nonlinear correlations between user preferences and the social information of trust and distrust relationships, and demonstrate the importance of our social negative sampling strategy on the proposed model

    Survey for Trust-aware Recommender Systems: A Deep Learning Perspective

    Full text link
    A significant remaining challenge for existing recommender systems is that users may not trust the recommender systems for either lack of explanation or inaccurate recommendation results. Thus, it becomes critical to embrace a trustworthy recommender system. This survey provides a systemic summary of three categories of trust-aware recommender systems: social-aware recommender systems that leverage users' social relationships; robust recommender systems that filter untruthful noises (e.g., spammers and fake information) or enhance attack resistance; explainable recommender systems that provide explanations of recommended items. We focus on the work based on deep learning techniques, an emerging area in the recommendation research
    corecore