495,630 research outputs found
Effective Doses of Recombinant Human Bone Morphogenetic Protein-2 in Experimental Spinal Fusion
Study Design Nineteen dogs underwent L4-L5 intertransverse process fusions with either 58 μg, 115 μg, 230 μg, 460 μg, or 920 μg of recombinant human bone morphogenetic protein-2 carried by a polylactic acid polymer. A previous study (12 dogs) compared 2300 μg of recombinant human bone morphogenetic protein-2, autogenous iliac bone, and carrier alone in this model. All fusions subsequently were compared.
Objectives To characterize the dose-response relationship of recombinant human bone morphogenetic protein-2 in a spinal fusion model.
Summary of Background Data Recombinant osteoinductive morphogens, such as recombinant human bone morphogenetic protein-2, are effective in vertebrate diaphyseal defect and spinal fusion models. It is hypothesized that the quality of spinal fusion produced with recombinant human bone morphogenetic protein-2, above a threshold dose, does not change with increasing amounts of inductive protein.
Methods After decortication of the posterior elements, the designated implants were placed along the intertransverse process space bilaterally. The fusion sites were evaluated after 3 months by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis.
Results As in the study using 2300 μg of recombinant human bone morphogenetic protein-2, implantation of 58–920 μg of recombinant human bone morphogenetic protein-2 successfully resulted in intertransverse process fusion in the dog by 3 months. This had not occurred in animals containing autograft or carrier alone. The cross-sectional area of the fusion mass and mechanical stiffness of the L4-L5 intersegment were not dose-dependent. Histologic findings varied but were not related to rhBMP-2 dose. Inflammatory reaction to the composite implant was proportional inversely to the volume of the fusion mass.
Conclusions No mechanical, radiographic, or histologic differences in the quality of intertransverse process fusion resulted from a 40-fold variation in dose of recombinant human bone morphogenetic protein-2
Ebola virus VP35 induces high-level production of recombinant TPL-2–ABIN-2–NF-κB1 p105 complex in co-transfected HEK-293 cells
Activation of PKR (double-stranded-RNA-dependent protein kinase) by DNA plasmids decreases translation, and limits the amount of recombinant protein produced by transiently transfected HEK (human embryonic kidney)-293 cells. Co-expression with Ebola virus VP35 (virus protein 35), which blocked plasmid activation of PKR, substantially increased production of recombinant TPL-2 (tumour progression locus 2)–ABIN-2 [A20-binding inhibitor of NF-κB (nuclear factor κB) 2]–NF-κB1 p105 complex. VP35 also increased expression of other co-transfected proteins, suggesting that VP35 could be employed generally to boost recombinant protein production by HEK-293 cells
Glycolytic enzymes - novel carbohydrate binding proteins for glycoprotein analysis
•The cloning, expression, purification and characterisation of recombinant prokaryotic glycolytic enzymes
•The mutagenesis of prokaryotic glycolytic enzymes to generate novel recombinant carbohydrate binding proteins
•The characterisation of the binding profile of the novel recombinant carbohydrate binding protein
Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system
ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein. © 2016 Elsevier Inc. All rights reserved
Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein
Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges
Russell-like bodies in plant seeds share common features with prolamin bodies and occur upon recombinant protein production
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production
Recombinant human preproinsulin expression, purification and reaction with insulin autoantibodies in sera from patients with insulin-dependent diabetes mellitus
A novel prokaryotic expression vector pGEX-6T was designed for high-level expression of recombinant fusion protein with a histidine-hexapeptide and glutathione-S-transferase at its N-terminus and the recombinant human preproinsulin at its C-terminus. Efficiency of expression was investigated in the Escherichia coli strain CAG456. The synthesized protein was sequestered in an insoluble form in inclusion bodies and was purified to homogeneity by one-step affinity chromatography based on the specific complex formation of the histidine-hexapeptide and a chelating matrix which was charged with Ni2+ ions. The antigenic nature of the purified recombinant preproinsulin fusion protein was evaluated by ELISA screening for insulin autoantibodies in selected sera from patients with recent-onset type 1 (insulin-dependent) diabetes mellitus classified by the existence of additional autoantibodies reactive against glutamic acid decarboxylase. 14% of the tested sera (n=43) conttained insulin autoantibodies which strongly recognized the recombinant human preproinsulin. Comparable measurements with both recombinant human preproinsulin and mature insulin suggested that the observed autoantigenicity of preproinsulin was mediated by the C-peptide or/and signal peptide
19F NMR spectroscopy monitors ligand binding to recombinantly fluorine-labelled b'x from human protein disulphide isomerase (hPDI)
We report a protein-observe (19)F NMR-based ligand titration binding study of human PDI b'x with ?-somatostatin that also emphasises the need to optimise recombinant protein fluorination when using 5- or 6-fluoroindole. This study highlights a recombinant preference for 5-fluoroindole over 6-fluoroindole; most likely due to the influence of fluorine atomic packing within the folded protein structure. Fluorination affords a single (19)F resonance probe to follow displacement of the protein x-linker as ligand is titrated and provides a dissociation constant of 23 ± 4 ?M
Cloning and expression of the Propionibacterium shermanii methylmalonyl-CoA epimerase gene in Escherichia coli : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University
Genomic DNA was isolated from Propionibacterium shermanii (52W). A 454 bp DNA fragment coding for the methylmalonyl-CoA epimerase (EC 5.1.99.1, subsequently referred to as epimerase) was amplified from genomic DNA by the polymerase chain reaction using primers designed from the known DNA sequence of the gene. The P. shermanii epimerase gene was ligated into the 2.47 kbp expression vector pT7-7. The ligation reaction mixture was transformed into electroporation competent E.coli XL1-Blue cells. Plasmid DNA prepared from several transformants was analysed, by agarose gel electrophoresis of restriction enzyme digestions, and transformed into E.coli SRP84/pGP1-2 cells to identify potential epimerase expression constructs (pTEEX) by heat shock induction. The insert DNA of one of the putative pTEEX epimerase constructs was fully sequenced and shown to be identical to the known DNA sequence of the epimerase gene described by Davis (1987). Using the sequenced expression construct pTEEX, recombinant epimerase was expressed to 20-35% of the total cell protein in the protease deficient E.coli strain SRP84 using the dual plasmid expression system of Tabor and Richardson (1985). The recombinant epimerase was ~95-100% soluble in E.coli. The recombinant epimerase and the 'wild-type' epimerase produced by P. shermanii were purified using the procedures developed for the 'wild-type' epimerase. The addition of a heat-treatment step (70°C for 15 min) early in the purification of the recombinant enzyme successfully exploited the unusually high thermostability of the epimerase protein. The epimerase protein was found to have an anomalously low electrophoretic mobility in a modified Laemmli discontinuous Tris-glycine alkaline buffer system for SDS-PAGE gels compared to the Weber and Osborn continuous phosphate buffer system. Using the latter system, a subunit molecular weight of 16.6 kDa was obtained. This is consistent with the molecular weight of 16.72 kDa (methionine on) calculated from the inferred amino acid sequence. The N-terminal sequence of the purified 'wild-type' and recombinant epimerases were identical although only half of N-terminal methionine residues were removed from the recombinant protein. The subunit molecular weight, specific activity, activation by divalent metal ions and behaviour in crystallization trials of the 'wild-type' and recombinant epimerases were very similar. Recombinant epimerase crystals were grown in a buffer containing 0.2 M ammonium acetate and 0.1 M citrate, pH 5.6, containing 30% PEG 4000 as precipitant. These crystals were relatively poorly ordered and diffracted to only 4.5 Ǻ resolution, but crystals of the recombinant epimerase that diffract to 2.6Ǻ can be grown under appropriate conditions
Experimental Spinal Fusion With Recombinant Human Bone Morphogenetic Protein-2 Without Decortication of Osseous Elements
Study Design. L4-L5 intertransverse process fusions were produced with 58 μg, 230 μg, or 920 μg of recombinant human bone morphogenetic protein-2 in 20 dogs. Eleven had traditional decortication of posterior elements before insertion of the implant. Nine were left undecorticated. All animals were evaluated 3 months after surgery.
Objectives. To determine whether decortication is a prerequisite for successful fusion in the presence of osteoinductive proteins such as bone morphogenetic protein-2.
Summary of Background Data. Recombinant osteoinductive proteins can induce de novo bone in ectopic soft-tissue sites in the absence of bone marrow elements. Traditional methods for achieving spinal fusion rely on exposure of bone marrow through decortication to facilitate osteogenesis. It is hypothesized that the presence of an implanted osteoinductive protein obviates the need for exposure and release of host inductive factors.
Methods. Recombinant human bone morphogenetic protein-2-induced intertransverse process fusions were performed with and without decortication. Fusion sites were evaluated by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis.
Results. One hundred percent of decorticated spines and 89% of undecorticated spines were clinically fused by 3 months. Ninety-one percent of decorticated spines and 78% of undecorticated specimens exhibited bilateral transverse process osseous bridging. The only spines that failed to achieve solid bilateral arthrodesis were in the lowest dose group. With the higher two doses, there was histologic evidence of osseous continuity between the fusion mass and undecorticated transverse processes.
Conclusions. There were no statistical differences in clinical and radiographic fusion rates between decorticated and undecorticated sites. With higher doses of recombinant human bone morphogenetic protein-2, there was little histologic distinction between fusions in decorticated versus undecorticated spines
- …
