930 research outputs found

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Handwritten Digit Recognition and Classification Using Machine Learning

    Get PDF
    In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.

    Get PDF
    In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and the excessive number of weights are often deliberately built in into their design. This flexibility and performance usually come with high computational and memory demands both during training and inference. In addition, insight into the mappings DNN models perform and human ability to understand them still remain very limited. This dissertation addresses some of these limitations by balancing three conflicting objectives: computational/ memory demands, interpretability, and accuracy. This dissertation first introduces some unsupervised feature learning methods in a broader context of dictionary learning. It also sets the tone for deep autoencoder learning and constraints for data representations in light of removing some of the aforementioned bottlenecks such as the feature interpretability of deep learning models with nonnegativity constraints on receptive fields. In addition, the two main classes of solution to the drawbacks associated with overparameterization/ over-complete representation in deep learning models are also presented. Subsequently, two novel methods, one for each solution class, are presented to address the problems resulting from over-complete representation exhibited by most deep learning models. The first method is developed to achieve inference-cost-efficient models via elimination of redundant features with negligible deterioration of prediction accuracy. This is important especially for deploying deep learning models into resource-limited portable devices. The second method aims at diversifying the features of DNNs in the learning phase to improve their performance without undermining their size and capacity. Lastly, feature diversification is considered to stabilize adversarial learning and extensive experimental outcomes show that these methods have the potential of advancing the current state-of-the-art on different learning tasks and benchmark datasets

    A Neural Network-based Approach for the Machine Vision of Character Recognition

    Get PDF
    In this paper, an attempt is made to develop off-line recognition strategies for the isolated Handwritten English character(A to Z) and (0 to 9). Challenges in handwritten character recognition wholly lie in the variation and distortion of handwritten characters, since different people may use different style of handwritten, and direction to draw the same shape of the characters of their known script. The paper provides a review on the process of character recognition using neural network. Character recognition methods are listed under two main headlines. The Offline methods use the static images properties. The Offline methods are further divided into four methods, which are clustering, Feature Extraction, Pattern Matching and Artificial Neural Network. The Online methods are subdivided into k-NN classifier and direction based algorithm. Character preprocessing is used binarization, thresolding and segmentation method. Neural network based method improves the character recognition. The proposed method is based on the feed forward back propogation method to classify the characters. The ANN is trained using the Back Propogation algorithm. In the proposed system, English nue-merical letter is represented by binary numbers that are assume as input and fed to an ANN. Neural network followed by Back Propagation Algorithm which compromises Training
    • …
    corecore