236 research outputs found

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    Performance Gaps of Artificial Intelligence Models Screening Mammography -- Towards Fair and Interpretable Models

    Full text link
    Even though deep learning models for abnormality classification can perform well in screening mammography, the demographic and imaging characteristics associated with increased risk of failure for abnormality classification in screening mammograms remain unclear. This retrospective study used data from the Emory BrEast Imaging Dataset (EMBED) including mammograms from 115,931 patients imaged at Emory University Healthcare between 2013 to 2020. Clinical and imaging data includes Breast Imaging Reporting and Data System (BI-RADS) assessment, region of interest coordinates for abnormalities, imaging features, pathologic outcomes, and patient demographics. Deep learning models including InceptionV3, VGG16, ResNet50V2, and ResNet152V2 were developed to distinguish between patches of abnormal tissue and randomly selected patches of normal tissue from the screening mammograms. The distributions of the training, validation and test sets are 29,144 (55.6%) patches of 10,678 (54.2%) patients, 9,910 (18.9%) patches of 3,609 (18.3%) patients, and 13,390 (25.5%) patches of 5,404 (27.5%) patients. We assessed model performance overall and within subgroups defined by age, race, pathologic outcome, and imaging characteristics to evaluate reasons for misclassifications. On the test set, a ResNet152V2 model trained to classify normal versus abnormal tissue patches achieved an accuracy of 92.6% (95%CI=92.0-93.2%), and area under the receiver operative characteristics curve 0.975 (95%CI=0.972-0.978). Imaging characteristics associated with higher misclassifications of images include higher tissue densities (risk ratio [RR]=1.649; p=.010, BI-RADS density C and RR=2.026; p=.003, BI-RADS density D), and presence of architectural distortion (RR=1.026; p<.001). Small but statistically significant differences in performance were observed by age, race, pathologic outcome, and other imaging features (p<.001).Comment: 21 pages, 4 tables, 5 figures, 2 supplemental table and 1 supplemental figur

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography
    corecore