3 research outputs found

    COVID-19 Public Opinion and Emotion Monitoring System Based on Time Series Thermal New Word Mining

    Full text link
    With the spread and development of new epidemics, it is of great reference value to identify the changing trends of epidemics in public emotions. We designed and implemented the COVID-19 public opinion monitoring system based on time series thermal new word mining. A new word structure discovery scheme based on the timing explosion of network topics and a Chinese sentiment analysis method for the COVID-19 public opinion environment is proposed. Establish a "Scrapy-Redis-Bloomfilter" distributed crawler framework to collect data. The system can judge the positive and negative emotions of the reviewer based on the comments, and can also reflect the depth of the seven emotions such as Hopeful, Happy, and Depressed. Finally, we improved the sentiment discriminant model of this system and compared the sentiment discriminant error of COVID-19 related comments with the Jiagu deep learning model. The results show that our model has better generalization ability and smaller discriminant error. We designed a large data visualization screen, which can clearly show the trend of public emotions, the proportion of various emotion categories, keywords, hot topics, etc., and fully and intuitively reflect the development of public opinion

    An Improved Method for the Fitting and Prediction of the Number of COVID-19 Confirmed Cases Based on LSTM

    Full text link
    New coronavirus disease (COVID-19) has constituted a global pandemic and has spread to most countries and regions in the world. By understanding the development trend of a regional epidemic, the epidemic can be controlled using the development policy. The common traditional mathematical differential equations and population prediction models have limitations for time series population prediction, and even have large estimation errors. To address this issue, we propose an improved method for predicting confirmed cases based on LSTM (Long-Short Term Memory) neural network. This work compared the deviation between the experimental results of the improved LSTM prediction model and the digital prediction models (such as Logistic and Hill equations) with the real data as reference. And this work uses the goodness of fitting to evaluate the fitting effect of the improvement. Experiments show that the proposed approach has a smaller prediction deviation and a better fitting effect. Compared with the previous forecasting methods, the contributions of our proposed improvement methods are mainly in the following aspects: 1) we have fully considered the spatiotemporal characteristics of the data, rather than single standardized data; 2) the improved parameter settings and evaluation indicators are more accurate for fitting and forecasting. 3) we consider the impact of the epidemic stage and conduct reasonable data processing for different stage

    Computer Vision with Deep Learning for Plant Phenotyping in Agriculture: A Survey

    Full text link
    In light of growing challenges in agriculture with ever growing food demand across the world, efficient crop management techniques are necessary to increase crop yield. Precision agriculture techniques allow the stakeholders to make effective and customized crop management decisions based on data gathered from monitoring crop environments. Plant phenotyping techniques play a major role in accurate crop monitoring. Advancements in deep learning have made previously difficult phenotyping tasks possible. This survey aims to introduce the reader to the state of the art research in deep plant phenotyping.Comment: Featured as an article at Journal of Advanced Computing and Communications, April 2020. arXiv admin note: text overlap with arXiv:1805.00881 by other author
    corecore