553,769 research outputs found
High-Dimensional Matched Subspace Detection When Data are Missing
We consider the problem of deciding whether a highly incomplete signal lies
within a given subspace. This problem, Matched Subspace Detection, is a
classical, well-studied problem when the signal is completely observed. High-
dimensional testing problems in which it may be prohibitive or impossible to
obtain a complete observation motivate this work. The signal is represented as
a vector in R^n, but we only observe m << n of its elements. We show that
reliable detection is possible, under mild incoherence conditions, as long as m
is slightly greater than the dimension of the subspace in question
Metric geodesics of isometries in a Hilbert space and the extension problem
We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentin
Exponential Convergence Bounds using Integral Quadratic Constraints
The theory of integral quadratic constraints (IQCs) allows verification of
stability and gain-bound properties of systems containing nonlinear or
uncertain elements. Gain bounds often imply exponential stability, but it can
be challenging to compute useful numerical bounds on the exponential decay
rate. In this work, we present a modification of the classical IQC results of
Megretski and Rantzer that leads to a tractable computational procedure for
finding exponential rate certificates
- …
