14,997 research outputs found

    Recent progress in linear algebra and lattice basis reduction (invited)

    Get PDF
    International audienceA general goal concerning fundamental linear algebra problems is to reduce the complexity estimates to essentially the same as that of multiplying two matrices (plus possibly a cost related to the input and output sizes). Among the bottlenecks one usually finds the questions of designing a recursive approach and mastering the sizes of the intermediately computed data. In this talk we are interested in two special cases of lattice basis reduction. We consider bases given by square matrices over K[x] or Z, with, respectively, the notion of reduced form and LLL reduction. Our purpose is to introduce basic tools for understanding how to generalize the Lehmer and Knuth-Schönhage gcd algorithms for basis reduction. Over K[x] this generalization is a key ingredient for giving a basis reduction algorithm whose complexity estimate is essentially that of multiplying two polynomial matrices. Such a problem relation between integer basis reduction and integer matrix multiplication is not known. The topic receives a lot of attention, and recent results on the subject show that there might be room for progressing on the question

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations

    Polynomial super-gl(n) algebras

    Get PDF
    We introduce a class of finite dimensional nonlinear superalgebras L=L0ˉ+L1ˉL = L_{\bar{0}} + L_{\bar{1}} providing gradings of L0ˉ=gl(n)sl(n)+gl(1)L_{\bar{0}} = gl(n) \simeq sl(n) + gl(1). Odd generators close by anticommutation on polynomials (of degree >1>1) in the gl(n)gl(n) generators. Specifically, we investigate `type I' super-gl(n)gl(n) algebras, having odd generators transforming in a single irreducible representation of gl(n)gl(n) together with its contragredient. Admissible structure constants are discussed in terms of available gl(n)gl(n) couplings, and various special cases and candidate superalgebras are identified and exemplified via concrete oscillator constructions. For the case of the nn-dimensional defining representation, with odd generators Qa,QˉbQ_{a}, \bar{Q}{}^{b}, and even generators Eab{E^{a}}_{b}, a,b=1,...,na,b = 1,...,n, a three parameter family of quadratic super-gl(n)gl(n) algebras (deformations of sl(n/1)sl(n/1)) is defined. In general, additional covariant Serre-type conditions are imposed, in order that the Jacobi identities be fulfilled. For these quadratic super-gl(n)gl(n) algebras, the construction of Kac modules, and conditions for atypicality, are briefly considered. Applications in quantum field theory, including Hamiltonian lattice QCD and space-time supersymmetry, are discussed.Comment: 31 pages, LaTeX, including minor corrections to equation (3) and reference [60

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Twisted lattice supersymmetry and applications to AdS/CFT

    Get PDF
    I review recent approaches to constructing supersymmetric lattice theories focusing in particular on the concept of topological twisting. The latter technique is shown to expose a nilpotent, scalar supersymmetry which can be implemented exactly in the lattice theory. Using these ideas a lattice action for N=4\mathcal{N}=4 super Yang-Mills in four dimensions can be written down which is gauge invariant, free of fermion doublers and respects one out of a total of 16 continuum supersymmetries. It is shown how these exact symmetries together with the large point group symmetry of the lattice strongly constrain the possible counterterms needed to renormalize the theory and hence determine how much residual fine tuning will be needed to restore all supersymmetries in the continuum limit. We report on progress to study these renormalization effects at one loop. We go on to give examples of applications of these supersymmetric lattice theories to explore the connections between gauge theories and gravity.Comment: 16 pages. Plenary talk at Lattice 201
    corecore