12,768 research outputs found

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    Recent Advances in Efficient Computation of Deep Convolutional Neural Networks

    Full text link
    Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks also continue to increase. This will pose a significant challenge to the deployment of such networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become a hot topic within the deep learning community. As for hardware implementation of deep neural networks, a batch of accelerators based on FPGA/ASIC have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network acceleration, compression and accelerator design from both algorithm and hardware points of view. Specifically, we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network quantization, teacher-student networks, compact network design and hardware accelerators. Finally, we will introduce and discuss a few possible future directions.Comment: 14 pages, 3 figure

    A Survey of Model Compression and Acceleration for Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past five years, tremendous progress has been made in this area. In this paper, we review the recent techniques for compacting and accelerating DNN models. In general, these techniques are divided into four categories: parameter pruning and quantization, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and quantization are described first, after that the other techniques are introduced. For each category, we also provide insightful analysis about the performance, related applications, advantages, and drawbacks. Then we go through some very recent successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrices, the main datasets used for evaluating the model performance, and recent benchmark efforts. Finally, we conclude this paper, discuss remaining the challenges and possible directions for future work.Comment: Published in IEEE Signal Processing Magazine, updated version including more recent work

    Structured Probabilistic Pruning for Convolutional Neural Network Acceleration

    Full text link
    In this paper, we propose a novel progressive parameter pruning method for Convolutional Neural Network acceleration, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Unlike existing deterministic pruning approaches, where unimportant weights are permanently eliminated, SPP introduces a pruning probability for each weight, and pruning is guided by sampling from the pruning probabilities. A mechanism is designed to increase and decrease pruning probabilities based on importance criteria in the training process. Experiments show that, with 4x speedup, SPP can accelerate AlexNet with only 0.3% loss of top-5 accuracy and VGG-16 with 0.8% loss of top-5 accuracy in ImageNet classification. Moreover, SPP can be directly applied to accelerate multi-branch CNN networks, such as ResNet, without specific adaptations. Our 2x speedup ResNet-50 only suffers 0.8% loss of top-5 accuracy on ImageNet. We further show the effectiveness of SPP on transfer learning tasks.Comment: CNN model acceleration, 13 pages, 6 figures, accepted by Proceedings of the British Machine Vision Conference (BMVC), 2018 ora

    FPGA-based Accelerators of Deep Learning Networks for Learning and Classification: A Review

    Full text link
    Due to recent advances in digital technologies, and availability of credible data, an area of artificial intelligence, deep learning, has emerged, and has demonstrated its ability and effectiveness in solving complex learning problems not possible before. In particular, convolution neural networks (CNNs) have demonstrated their effectiveness in image detection and recognition applications. However, they require intensive CPU operations and memory bandwidth that make general CPUs fail to achieve desired performance levels. Consequently, hardware accelerators that use application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and graphic processing units (GPUs) have been employed to improve the throughput of CNNs. More precisely, FPGAs have been recently adopted for accelerating the implementation of deep learning networks due to their ability to maximize parallelism as well as due to their energy efficiency. In this paper, we review recent existing techniques for accelerating deep learning networks on FPGAs. We highlight the key features employed by the various techniques for improving the acceleration performance. In addition, we provide recommendations for enhancing the utilization of FPGAs for CNNs acceleration. The techniques investigated in this paper represent the recent trends in FPGA-based accelerators of deep learning networks. Thus, this review is expected to direct the future advances on efficient hardware accelerators and to be useful for deep learning researchers.Comment: This article has been accepted for publication in IEEE Access (December, 2018

    A novel channel pruning method for deep neural network compression

    Full text link
    In recent years, deep neural networks have achieved great success in the field of computer vision. However, it is still a big challenge to deploy these deep models on resource-constrained embedded devices such as mobile robots, smart phones and so on. Therefore, network compression for such platforms is a reasonable solution to reduce memory consumption and computation complexity. In this paper, a novel channel pruning method based on genetic algorithm is proposed to compress very deep Convolution Neural Networks (CNNs). Firstly, a pre-trained CNN model is pruned layer by layer according to the sensitivity of each layer. After that, the pruned model is fine-tuned based on knowledge distillation framework. These two improvements significantly decrease the model redundancy with less accuracy drop. Channel selection is a combinatorial optimization problem that has exponential solution space. In order to accelerate the selection process, the proposed method formulates it as a search problem, which can be solved efficiently by genetic algorithm. Meanwhile, a two-step approximation fitness function is designed to further improve the efficiency of genetic process. The proposed method has been verified on three benchmark datasets with two popular CNN models: VGGNet and ResNet. On the CIFAR-100 and ImageNet datasets, our approach outperforms several state-of-the-art methods. On the CIFAR-10 and SVHN datasets, the pruned VGGNet achieves better performance than the original model with 8 times parameters compression and 3 times FLOPs reduction

    Exploring the Regularity of Sparse Structure in Convolutional Neural Networks

    Full text link
    Sparsity helps reduce the computational complexity of deep neural networks by skipping zeros. Taking advantage of sparsity is listed as a high priority in next generation DNN accelerators such as TPU. The structure of sparsity, i.e., the granularity of pruning, affects the efficiency of hardware accelerator design as well as the prediction accuracy. Coarse-grained pruning creates regular sparsity patterns, making it more amenable for hardware acceleration but more challenging to maintain the same accuracy. In this paper we quantitatively measure the trade-off between sparsity regularity and prediction accuracy, providing insights in how to maintain accuracy while having more a more structured sparsity pattern. Our experimental results show that coarse-grained pruning can achieve a sparsity ratio similar to unstructured pruning without loss of accuracy. Moreover, due to the index saving effect, coarse-grained pruning is able to obtain a better compression ratio than fine-grained sparsity at the same accuracy threshold. Based on the recent sparse convolutional neural network accelerator (SCNN), our experiments further demonstrate that coarse-grained sparsity saves about 2x the memory references compared to fine-grained sparsity. Since memory reference is more than two orders of magnitude more expensive than arithmetic operations, the regularity of sparse structure leads to more efficient hardware design.Comment: submitted to NIPS 201

    Ensemble Convolutional Neural Networks for Mode Inference in Smartphone Travel Survey

    Full text link
    We develop ensemble Convolutional Neural Networks (CNNs) to classify the transportation mode of trip data collected as part of a large-scale smartphone travel survey in Montreal, Canada. Our proposed ensemble library is composed of a series of CNN models with different hyper-parameter values and CNN architectures. In our final model, we combine the output of CNN models using "average voting", "majority voting" and "optimal weights" methods. Furthermore, we exploit the ensemble library by deploying a Random Forest model as a meta-learner. The ensemble method with random forest as meta-learner shows an accuracy of 91.8% which surpasses the other three ensemble combination methods, as well as other comparable models reported in the literature. The "majority voting" and "optimal weights" combination methods result in prediction accuracy rates around 89%, while "average voting" is able to achieve an accuracy of only 85%

    Deep Learning for Surface Material Classification Using Haptic And Visual Information

    Full text link
    When a user scratches a hand-held rigid tool across an object surface, an acceleration signal can be captured, which carries relevant information about the surface. More importantly, such a haptic signal is complementary to the visual appearance of the surface, which suggests the combination of both modalities for the recognition of the surface material. In this paper, we present a novel deep learning method dealing with the surface material classification problem based on a Fully Convolutional Network (FCN), which takes as input the aforementioned acceleration signal and a corresponding image of the surface texture. Compared to previous surface material classification solutions, which rely on a careful design of hand-crafted domain-specific features, our method automatically extracts discriminative features utilizing the advanced deep learning methodologies. Experiments performed on the TUM surface material database demonstrate that our method achieves state-of-the-art classification accuracy robustly and efficiently.Comment: 8 pages, under review as a paper at Transactions on Multimedi

    An Entropy-based Pruning Method for CNN Compression

    Full text link
    This paper aims to simultaneously accelerate and compress off-the-shelf CNN models via filter pruning strategy. The importance of each filter is evaluated by the proposed entropy-based method first. Then several unimportant filters are discarded to get a smaller CNN model. Finally, fine-tuning is adopted to recover its generalization ability which is damaged during filter pruning. Our method can reduce the size of intermediate activations, which would dominate most memory footprint during model training stage but is less concerned in previous compression methods. Experiments on the ILSVRC-12 benchmark demonstrate the effectiveness of our method. Compared with previous filter importance evaluation criteria, our entropy-based method obtains better performance. We achieve 3.3x speed-up and 16.64x compression on VGG-16, 1.54x acceleration and 1.47x compression on ResNet-50, both with about 1% top-5 accuracy decrease
    corecore