61,481 research outputs found

    FractalAD: A simple industrial anomaly detection method using fractal anomaly generation and backbone knowledge distillation

    Full text link
    Although industrial anomaly detection (AD) technology has made significant progress in recent years, generating realistic anomalies and learning priors of normal remain challenging tasks. In this study, we propose an end-to-end industrial anomaly detection method called FractalAD. Training samples are obtained by synthesizing fractal images and patches from normal samples. This fractal anomaly generation method is designed to sample the full morphology of anomalies. Moreover, we designed a backbone knowledge distillation structure to extract prior knowledge contained in normal samples. The differences between a teacher and a student model are converted into anomaly attention using a cosine similarity attention module. The proposed method enables an end-to-end semantic segmentation network to be used for anomaly detection without adding any trainable parameters to the backbone and segmentation head, and has obvious advantages over other methods in training and inference speed.. The results of ablation studies confirmed the effectiveness of fractal anomaly generation and backbone knowledge distillation. The results of performance experiments showed that FractalAD achieved competitive results on the MVTec AD dataset and MVTec 3D-AD dataset compared with other state-of-the-art anomaly detection methods.Comment: 12 pages, 5 figure

    Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress

    Full text link
    Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the 1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a meaningful gauge of overall progress

    TeD-SPAD: Temporal Distinctiveness for Self-supervised Privacy-preservation for video Anomaly Detection

    Full text link
    Video anomaly detection (VAD) without human monitoring is a complex computer vision task that can have a positive impact on society if implemented successfully. While recent advances have made significant progress in solving this task, most existing approaches overlook a critical real-world concern: privacy. With the increasing popularity of artificial intelligence technologies, it becomes crucial to implement proper AI ethics into their development. Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information, which may lead to undesirable decision making. In this paper, we propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner. In particular, we propose the use of a temporally-distinct triplet loss to promote temporally discriminative features, which complements current weakly-supervised VAD methods. Using TeD-SPAD, we achieve a positive trade-off between privacy protection and utility anomaly detection performance on three popular weakly supervised VAD datasets: UCF-Crime, XD-Violence, and ShanghaiTech. Our proposed anonymization model reduces private attribute prediction by 32.25% while only reducing frame-level ROC AUC on the UCF-Crime anomaly detection dataset by 3.69%. Project Page: https://joefioresi718.github.io/TeD-SPAD_webpage/Comment: ICCV 202

    Graph-based Time-Series Anomaly Detection: A Survey

    Full text link
    With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency and the inter-variable dependency, where a variable can be defined as an observation in time series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of Graph-based TSAD (G-TSAD). First, we explore the significant potential of graph representation learning for time-series data. Then, we review state-of-the-art graph anomaly detection techniques in the context of time series and discuss their strengths and drawbacks. Finally, we discuss the technical challenges and potential future directions for possible improvements in this research field.Comment: 19 pages, 4 figures, 2 table

    Bridging Machine Learning and Sciences: Opportunities and Challenges

    Full text link
    The application of machine learning in sciences has seen exciting advances in recent years. As a widely applicable technique, anomaly detection has been long studied in the machine learning community. Especially, deep neural nets-based out-of-distribution detection has made great progress for high-dimensional data. Recently, these techniques have been showing their potential in scientific disciplines. We take a critical look at their applicative prospects including data universality, experimental protocols, model robustness, etc. We discuss examples that display transferable practices and domain-specific challenges simultaneously, providing a starting point for establishing a novel interdisciplinary research paradigm in the near future.Comment: 8 pages, 3 figure
    • …
    corecore