3,144 research outputs found

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Performance evaluation of hybrid ARQ schemes of 3GPP LTE OFDMA system

    Get PDF

    Raptor codes for infrastructure-to-vehicular broadcast services

    Get PDF

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Adaptive Wireless Networking

    Get PDF
    This paper presents the Adaptive Wireless Networking (AWGN) project. The project aims to develop methods and technologies that can be used to design efficient adaptable and reconfigurable mobile terminals for future wireless communication systems. An overview of the activities in the project is given. Furthermore our vision on adaptivity in wireless communications and suggestions for future activities are presented

    A Multi-Service Oriented Multiple-Access Scheme for Next-Generation Mobile Networks

    Full text link
    One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) stablishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.Comment: 6 pages, 3 figures, accepted to the European Conference on Networks and Communications (EuCNC 2016
    corecore