5 research outputs found

    User clustering and resource allocation in downlinkCoMP with NOMA

    Get PDF
    In coordinated multipoint (CoMP) system, the cell-edge performance is improved by minimizing inter-cell interference (ICI) through coordination of resources. Additionally, the non-orthogonal multiple access (NOMA) has been introduced as a promising candidate to further enhance the throughput of next generation wireless communication systems. NOMA allows multiple users to access the wireless channel in the same bandwidth simultaneously, however at different transmit power. In joint transmission NOMA in CoMP (JT-NOMA-CoMP), multiple cells jointly transmit data to users using the same time-frequency resources, which significantly improves the system performance. In this paper, we present a low-complexity user clustering and resource allocation strategy in downlink JP-NOMA-CoMP system with multiple antenna. Based on computer simulation, we show that the proposed approach outperforms the conventional JP-OMA-CoMP and single antenna JP-NOMA-CoMP in terms of achievable sum rate

    Link and system-level NOMA simulator : the reproducibility of research

    Get PDF
    This study focuses on the design of a MATLAB platform for non-orthogonal multiple access (NOMA) based systems with link-level and system-level analyses. Among the different potential candidates for 5G, NOMA is gaining considerable attention owing to the many-fold increase in spectral efficiency as compared to orthogonal multiple access (OMA). In this study, a NOMA simulator is presented for two and more than two users in a single cell for link-level analysis; whereas, for system-level analysis, seven cells and 19 cells scenarios were considered. Long-term evolution (LTE) was used as the baseline for the NOMA simulator, while bit error rate (BER), throughput and spectral efficiency are used as performance metrics to analyze the simulator performance. Moreover, we demonstrated the application of the NOMA simulator for different simulation scenarios through examples. In addition, the performance of multi-carrier NOMA (MC-NOMA) was evaluated in the presence of AWGN, impulse noise, and intercell interference. To circumvent channel impairments, channel coding with linear precoding is suggested to improve the BER performance of the system
    corecore