4 research outputs found

    Analysis and power diversity-based cancellation of nonlinear distortions in OFDM systems

    Get PDF
    International audienceOne of the main drawbacks of orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR) of the transmitted signals, which can cause the introduction of inter-carrier interference (ICI) due to the presence of nonlinear power amplifiers (PAs). In this paper, a theoretical analysis of ICI in nonlinear OFDM systems with polynomial PAs is made. Contrarily to other works, this analysis provides an exact description of nonlinear ICI. Moreover, three receivers for channel estimation and ICI cancellation in OFDM systems with polynomial PAs are proposed, based on the concept of power diversity that consists in re-transmitting the information symbols several times with a different transmission power each time. The transmission powers that minimize the sum of the residual mean square errors (MSEs) provided by the proposed receivers are derived in the case of a third-degree polynomial PA. An important advantage of the proposed receivers is that the optimal transmission powers do not depend on the channel nor the PA coefficients

    Receiver Cancellation Technique for Nonlinear Power Amplifier Distortion in SDMA-OFDM Systems

    No full text
    Space-division multiple access (SDMA) and orthogonal frequency-division multiplexing (OFDM) can be combined to design a robust communications system with increased spectral efficiency and system capacity. This combination is one of the most promising candidates for future wireless local area network implementations. However, one drawback of OFDM systems is the high peak-to-average power ratio, which imposes strong requirements on the linearity of power amplifiers (PAs). Such linearity requirements translate into high back-off that results in low power efficiency. In order to improve power efficiency, a PA nonlinearity cancellation (PANC) technique is introduced in this paper. This technique reduces the nonlinear distortion effects on the received signal. The performance of the new technique is evaluated with simulations, which show significant power efficiency improvements. To obtain meaningful results for comparison purposes, we derive a theoretical upper bound on the bit error rate performance of an SDMA-OFDM system subject to PA nonlinearities. In addition, a novel channel estimation technique that combines frequency- and time-domain channel estimation with PANC is also presented. Simulation results show the robustness of the cancellation method also when channel estimation is included.Fil: Gregorio, Fernando Hugo. University of Helsinski; Finlandia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Werner, Stefan. University of Helsinski; FinlandiaFil: Laakso, Timo I.. University of Helsinski; FinlandiaFil: Cousseau, Juan Edmundo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentin
    corecore