56,101 research outputs found

    Recalibrating valence weighting biases to promote changes in rejection sensitivity and risk-taking

    Get PDF
    Past research has found that modifying individuals' valence weighting tendencies by recalibrating them to weight positive and negative valence in a more balanced manner influenced a variety of judgments. The current research examines the utility of the recalibration procedure as a targeted intervention. In Experiment 1, we recruited participants high in rejection sensitivity (who are known to exhibit a negative weighting bias) and in Experiment 2, we recruited participants with high risk tendencies (who are known to exhibit a positive weighting bias). In both experiments, participants first played BeanFest, in which they were presented with beans varying in shape and speckles and learned which increased or decreased points. They later classified the game beans, as well as novel ones varying in their resemblance to the known positives or known negatives, as good or bad. In the recalibration condition, participants were told if they classified each bean correctly, thus receiving feedback regarding the appropriate weighting of resemblance to a known positive versus a negative. The controls, who received no feedback, were less accurate at classifying the novel the beans than the recalibration participants. Furthermore, in Experiment 1, the recalibration condition subsequently exhibited lower sensitivity to rejection than the control condition, with this reduction being stronger for individuals initially higher in rejection sensitivity. This effect was still present a week later. In Experiment 2, the recalibration condition reported diminished risk-tendencies, again with this effect being stronger for individuals with initially higher riskiness, and persisting for a week. Even more importantly, recalibration participants also engaged in less risky behavior on a laboratory task

    Spatial grouping resolves ambiguity to drive temporal recalibration.

    Get PDF
    Cross-modal temporal recalibration describes a shift in the point of subjective simultaneity (PSS) between 2 events following repeated exposure to asynchronous cross-modal inputs-the adaptors. Previous research suggested that audiovisual recalibration is insensitive to the spatial relationship between the adaptors. Here we show that audiovisual recalibration can be driven by cross-modal spatial grouping. Twelve participants adapted to alternating trains of lights and tones. Spatial position was manipulated, with alternating sequences of a light then a tone, or a tone then a light, presented on either side of fixation (e.g., left tone-left light-right tone-right light, etc.). As the events were evenly spaced in time, in the absence of spatial-based grouping it would be unclear if tones were leading or lagging lights. However, any grouping of spatially colocalized cross-modal events would result in an unambiguous sense of temporal order. We found that adapting to these stimuli caused the PSS between subsequent lights and tones to shift toward the temporal relationship implied by spatial-based grouping. These data therefore show that temporal recalibration is facilitated by spatial grouping. (PsycINFO Database Record (c) 2011 APA, all rights reserved)

    The critical events for motor-sensory temporal recalibration

    Get PDF
    Determining if we, or another agent, were responsible for a sensory event can require an accurate sense of timing. Our sense of appropriate timing relationships must, however, be malleable as there is a variable delay between the physical timing of an event and when sensory signals concerning that event are encoded in the brain. One dramatic demonstration of such malleability involves having people repeatedly press a button thereby causing a beep. If a delay is inserted between button presses and beeps, when it is subsequently taken away beeps can seem to precede the button presses that caused them. For this to occur it is important that people feel they were responsible for instigating the beeps. In terms of their timing, as yet it is not clear what combination of events is important for motor-sensory temporal recalibration. Here, by introducing ballistic reaches of short or longer extent before a button press, we varied the delay between the intention to act and the sensory consequence of that action. This manipulation failed to modulate recalibration magnitude. By contrast, introducing a similarly lengthened delay between button presses and consequent beeps eliminated recalibration. Thus it would seem that the critical timing relationship for motor-sensory temporal recalibration is between tactile signals relating to the completion of an action and the subsequent auditory percept

    Recalibrating a sugarcane crop model using thermal infrared data

    Full text link
    Coupling remotely sensed data with crop model is known to improve the estimation of crop variables by the model. The recalibration coupling approach tends to reduce the differences between observation and simulation by optimizing the value of one of the model's parameter. In this study, we used this approach with a sugarcane model and Crop Water Stress Index calculated using remotely sensed thermal infrared data in order to optimize the value of the root depth parameter thanks to measured and simulated AET/MET ratio. The effect of the root depth recalibration has also been assessed on the yield estimation, which showed good trends with a significant enhancement of the estimated yield. (Résumé d'auteur

    Computation of Equilibria in OLG Models with Many Heterogeneous Households

    Get PDF
    This paper develops a decomposition algorithm by which a market economy with many households may be solved through the computation of equilibria for a sequence of representative agent economies. The paper examines local and global convergence properties of the sequential recalibration (SR) algorithm. SR is then demonstrated to efficiently solve Auerbach-Kotlikoff OLG models with a large number of heterogeneous households. We approximate equilibria in OLG models by solving a sequence of related Ramsey optimal growth problems.This approach can provide improvements in both efficiency and robustness as compared with simultaneous solution-methods.Computable general equilibrium, overlapping generations, microsimulation, sequential recalibration

    Sociology of low expectations: Recalibration as innovation work in biomedicine

    Get PDF
    "This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm). "Social scientists have drawn attention to the role of hype and optimistic visions of the future in providing momentum to biomedical innovation projects by encouraging innovation alliances. In this article, we show how less optimistic, uncertain, and modest visions of the future can also provide innovation projects with momentum. Scholars have highlighted the need for clinicians to carefully manage the expectations of their prospective patients. Using the example of a pioneering clinical team providing deep brain stimulation to children and young people with movement disorders, we show how clinicians confront this requirement by drawing on their professional knowledge and clinical expertise to construct visions of the future with their prospective patients; visions which are personalized, modest, and tainted with uncertainty. We refer to this vision-constructing work as recalibration, and we argue that recalibration enables clinicians to manage the tension between the highly optimistic and hyped visions of the future that surround novel biomedical interventions, and the exigencies of delivering those interventions in a clinical setting. Drawing on work from science and technology studies, we suggest that recalibration enrolls patients in an innovation alliance by creating a shared understanding of how the “effectiveness” of an innovation shall be judged.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)

    The fast contribution of visual-proprioceptive discrepancy to reach aftereffects and proprioceptive recalibration

    Get PDF
    Adapting reaches to altered visual feedback not only leads to motor changes, but also to shifts in perceived hand location; “proprioceptive recalibration”. These changes are robust to many task variations and can occur quite rapidly. For instance, our previous study found both motor and sensory shifts arise in as few as 6 rotated-cursor training trials. The aim of this study is to investigate one of the training signals that contribute to these rapid sensory and motor changes. We do this by removing the visuomotor error signals associated with classic visuomotor rotation training; and provide only experience with a visual-proprioceptive discrepancy for training. While a force channel constrains reach direction 30o away from the target, the cursor representing the hand unerringly moves straight to the target. The resulting visual-proprioceptive discrepancy drives significant and rapid changes in no-cursor reaches and felt hand position, again within only 6 training trials. The extent of the sensory change is unexpectedly larger following the visual-proprioceptive discrepancy training. Not surprisingly the size of the reach aftereffects is substantially smaller than following classic visuomotor rotation training. However, the time course by which both changes emerge is similar in the two training types. These results suggest that even the mere exposure to a discrepancy between felt and seen hand location is a sufficient training signal to drive robust motor and sensory plasticity.York University Librarie
    corecore