88,379 research outputs found

    Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment.

    Get PDF
    Evolutionary trade-offs among ecological traits are one mechanism that could determine the responses of functional groups of decomposers to global changes such as nitrogen (N) enrichment. We hypothesised that bacteria targeting recalcitrant carbon compounds require relatively high levels of N availability to support the construction costs of requisite extracellular and transport enzymes. Indeed, we found that taxa that used more recalcitrant (i.e. larger and cyclic) carbon compounds were more prevalent in ocean waters with higher nitrate concentrations. Compared to recalcitrant carbon users, labile carbon users targeted more organic N compounds, were found in relatively nitrate-poor waters, and were more common in higher latitude soils, which is consistent with the paradigm that N-limitation is stronger at higher latitudes. Altogether, evolutionary trade-offs may limit recalcitrant carbon users to habitats with higher N availability

    Platelet-Rich Plasma Injection With Percutaneous Needling for Recalcitrant Lateral Epicondylitis: Comparison of Tenotomy and Fenestration Techniques.

    Get PDF
    Background: Recalcitrant lateral epicondylitis (LE) is a common debilitating condition, with numerous treatment options of varying success. An injection of platelet-rich plasma (PRP) has been shown to improve LE, although it is unclear whether the method of needling used in conjunction with a PRP injection is of clinical importance. Purpose: To determine whether percutaneous needle tenotomy is superior to percutaneous needle fenestration when each is combined with a PRP injection for the treatment of recalcitrant LE. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 93 patients with recalcitrant LE were treated with a PRP injection and percutaneous needle fenestration (n = 45) or percutaneous needle tenotomy (n = 48) over a 5-year study interval. Preoperative patient data, including visual analog scale for pain (VAS-P), Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH), and Patient-Rated Tennis Elbow Evaluation (PRTEE) scores and grip strength, were obtained from a chart review and compared with postoperative values obtained prospectively. Secondary outcomes included the incidence of complications, need for additional interventions, return to work, and patient satisfaction. Results: At a mean follow-up of 40 months, significant improvements in VAS-P (mean, -6.1; 95% CI, -6.8 to -5.5; P \u3c .0001), QuickDASH (mean, -46; 95% CI, -52 to -40; P \u3c .0001), and PRTEE (mean, -57; 95% CI, -64 to -50; P \u3c .0001) scores and grip strength (mean, +6.1 kg; 95% CI, 4.9 to 7.3; P \u3c .0001) were observed across the entire study cohort, with no significant differences noted between the fenestration and tenotomy groups. Nine of 45 patients (22%) underwent additional procedures to treat recurrent symptoms in the fenestration group compared with 5 of 48 patients (10%) in the tenotomy group (P = .05). No complications occurred in any patients, and no patients expressed dissatisfaction with their treatment course. Conclusion: A PRP injection with concomitant percutaneous needling is an effective treatment for recalcitrant LE, with sustained improvements in pain, strength, and function demonstrated at a mean follow-up of longer than 3 years. Although the method of concomitant needling does not appear to have a significant effect on treatment outcomes, more aggressive needle tenotomy is less likely to require conversion to open tenotomy than needle fenestration in the short term to midterm

    Catch Crops in Organic Farming Systems without Livestock Husbandry - Simulations with the DAISY model

    Get PDF
    This paper presents simulations of the soil-plant-atmosphere model DAISY based on an organic crop rotation with incorporation of different catch crops following pea as a leguminous cash crop. Special emphasise was put on the simulation of N-mineralisation/-immobilisation and of soil microbial biomass N. The DAISY model was able to simulate soil mineral N and soil microbial biomass N after soil incorporation of catch crop plant residues to some extend. Several processes need further attention and may be integrated into the DAISY model: (1) soil tillage induced mobilisation of organic material including considerable amounts of organic N, (2) winter killing of sensitive plant species and varieties, (3) decomposition of plant residues at the soil surface as occurring after winter killing, (4) decomposition of easily decomposable plant residues at low temperatures, (5) soil microbial residues as an organic pool temporarily protected against turnover. Furthermore, reliable criteria for the subdivision of green plant residues into an easily decomposable pool and a more recalcitrant pool have to be developed

    Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440

    Get PDF
    The majority of the world's crude oil reserves consist of highly biodegraded heavy and super heavy crude oils and oil sands that have not yet been fully exploited. These vast resources contain complex mixtures of carboxylic acids known as naphthenic acids (NAs). NAs cause major environmental and economic problems, as they are recalcitrant, corrosive and toxic. Although aromatic acids make up a small proportion of most NA mixtures, they have demonstrable toxicities to some organisms (e.g. some bacteria and algae) and ideally need to be removed or reduced by remediation. The present study analysed the ability of Pseudomonas putida KT2440 to degrade highly recalcitrant aromatic acids, as exemplified by the alkyl phenylalkanoic acid (4'-t-butylphenyl)-4-butanoic acid (t-BPBA) and the more degradable (4'-n-butylphenyl)-4-butanoic acid (n-BPBA). n-BPBA was completely metabolized after 14 days, with the production of a persistent metabolite identified as (4'-n-butylphenyl)ethanoic acid (BPEA) which resulted from removal of two carbon atoms from the carboxyl side chain (beta-oxidation) as observed previously with a mixed consortium. However, when n-BPBA concentration was increased two-fold, degradation decreased by 56% with a concomitant six-fold decrease in cell numbers, suggesting that at greater concentrations, n-BPBA may be toxic to P. putida KT2440. In contrast, P. putida KT2440 was unable to degrade the highly recalcitrant t-BPBA even after 49 days. These findings have implications for NA bioremediation in the environment. © 2011

    Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma in a patient-derived orthotopic xenograft (PDOX) mouse model.

    Get PDF
    An excessive requirement for methionine termed methionine dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by methionine deprivation such as with recombinant methioninase (rMETase). The present study used a previously-established patient-derived orthotopic xenograft (PDOX) nude mouse model of BRAF V600E-mutant melanoma to determine the efficacy of rMETase in combination with a first-line melanoma drug, temozolomide (TEM). In the present study 40 melanoma PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n=10); TEM (25 mg/kg, oral 14 consecutive days, n=10); rMETase (100 units, intraperitoneal 14 consecutive days, n=10); combination TEM + rMETase (TEM: 25 mg/kg, oral rMETase: 100 units, intraperitoneal 14 consecutive days, n=10). All treatments inhibited tumor growth compared to untreated control (TEM: p=0.0081, rMETase: p=0.0037, TEM-rMETase: p=0.0024) on day 14 after initiation. However, the combination therapy of TEM and rMETase was significantly more efficacious than either mono-therapy (TEM: p=0.0051, rMETase: p=0.0051). The present study is the first demonstrating the efficacy of rMETase combination therapy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as melanoma, where rMETase may enhance first-line therapy

    Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models.

    Get PDF
    Melanoma is a recalcitrant disease. Melanoma patients with the BRAF-V600E mutation have been treated with the drug vemurafenib (VEM) which targets this mutation. However, we previously showed that VEM is not very effective against a BRAF-V600E melanoma mutant in a patient-derived orthotopic xenograft (PDOX) model. In contrast, we demonstrated that recombinant methioninase (rMETase) which targets the general metabolic defect in cancer of methionine dependence, was effective against the BRAF-V600E mutant melanoma PDOX model. In the present study, we demonstrate that rMETase is effective against a BRAF-V600E-negative melanoma PDOX which we established. Forty BRAF-V600E-negative melanoma PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); temozolomide (TEM) (25 mg/kg, p.o., 14 consecutive days, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); TEM + rMETase (TEM: 25 mg/kg, p.o., rMETase: 100 units, i.p., 14 consecutive days, n = 10). All treatments inhibited tumor growth compared to untreated control (TEM: p = 0.0003, rMETase: p = 0.0006, TEM/rMETase: p = 0.0002) on day 14 after initiation. Combination therapy of TEM and rMETase was significantly more effective than either mono-therapy (TEM: p = 0.0113, rMETase: p = 0.0173). The present study shows that TEM combined with rMETase is effective for BRAF-V600E-negative melanoma PDOX similar to the BRAF-V600E-positive mutation melanoma. These results suggest rMETase in combination with first-line chemotherapy can be highly effective in both BRAF-V600E-negative as well as BRAF-V600E-positive melanoma and has clinical potential for this recalcitrant disease

    Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation

    Get PDF
    This study investigated the treatment of a shipboard slop containing commercial gasoline in a pilot plant scale consisting of a membrane biological reactor (MBR) and photocatalytic reactor (PCR) acting in series. The MBR contributed for approximately 70% to the overall slop purification. More precisely, the biological process was able to remove approximately 40%, on average, of the organic pollution in the slop. Nevertheless, the membrane was capable to retain a large amount of organic molecules within the system, amounting for a further 30% of the influent total organic content removal. However, this affected the membrane fouling, thus resulting in the increase of the pore blocking mechanism that accounted for approximately 20% to the total resistance to filtration (2.85∙10 13 m −1 ), even if a significant restoration of the original membrane permeability was obtained after chemical cleanings. On the other hand, the biological treatment produced a clear solution for the photocatalytic system, thereby optimizing the light penetration and generation of highly oxidizing active oxygen species that enabled the degradation of bio-recalcitrant compounds. Indeed, low total organic carbon (TOC) values (<10 mg L −1 ) were achieved in the output of the photocatalytic reactor by means of only 60 Einstein (E) of cumulative impinging energy after the addition of K 2 S 2 O 8 . Overall, coupling the two processes enabled very high TOC removal (ca. 95%)

    The role of trait emotional intelligence and social and emotional skills in students’ emotional and behavioural strengths and difficulties : a study of Greek adolescents’ perceptions

    Get PDF
    The emergence of the Trait Emotional Intelligence construct shifted the interest in personality research to the investigation of the effect of global personality characteristics on behaviour. A second body of research in applied settings, the Social and Emotional Learning movement, emphasized the cultivation of emotional and social skills for positive relationships in a school environment. In this paper we investigate the role of both personality traits and social and emotional skills, in the occurrence of emotional and behavioural strengths and difficulties, according to adolescent students’ self-perceptions. Five hundred and fifty-nine students from state secondary schools in Greece, aged 12-14 years old, completed The Trait Emotional Intelligence Questionnaire-Adolescent Short Form, The Matson Evaluation of Social Skills with Youngsters, and The Strengths and Difficulties Questionnaire. It was found that students with higher Trait Emotional Intelligence and stronger social and emotional skills were less likely to present emotional, conduct, hyperactivity and peer difficulties and more likely to present prosocial behaviour. Gender was a significant factor for emotional difficulties and grade for peer difficulties. The paper describes the underlying mechanisms of students’ emotional and behavioural strengths and difficulties, and provides practical implications for educators to improve the quality of students’ lives in schools.peer-reviewe
    corecore