1,380,998 research outputs found

    Energy saving potential of a counter-flow regenerative evaporative cooler for various climates of China: Experiment-based evaluation

    Get PDF
    © 2017 Recently there has been growing interest in regenerative evaporative coolers (REC), which can reduce the temperature of the supply air to below the wet-bulb of intake air and approach its dew-point. In this paper, we designed, fabricated and experimentally tested a counter-flow REC in laboratory. The REC's core heat and mass exchanger was fabricated using stacked sheets composed of high wicking evaporation (wickability of available materials was measured) and waterproof aluminium materials. The developed REC system has a much higher cooling performance compared to conventional indirect evaporative cooler. However, the decision to use the REC for China buildings depends on a dedicated evaluation of the net energy saved against the capital expended. Such an evaluation requires the hourly-based data on the availability of cooling capacity provided by the REC for various climates. The paper used an experiment-based method to estimate the cooling capacity and energy savings provided by the proposed REC for China's various climates. By using the experimental results and regional hourly-based weather data, the energy saving potential of the REC against an equivalent-sized mechanical air conditioner alone was analysed. The results indicate that, for all selected regions, the REC could reduce 53–100% of cooling load and 13–58% of electrical energy consumption annually

    Geometric medians in reconciliation spaces

    Get PDF
    In evolutionary biology, it is common to study how various entities evolve together, for example, how parasites coevolve with their host, or genes with their species. Coevolution is commonly modelled by considering certain maps or reconciliations from one evolutionary tree PP to another HH, all of which induce the same map ϕ\phi between the leaf-sets of PP and HH (corresponding to present-day associations). Recently, there has been much interest in studying spaces of reconciliations, which arise by defining some metric dd on the set Rec(P,H,ϕ)Rec(P,H,\phi) of all possible reconciliations between PP and HH. In this paper, we study the following question: How do we compute a geometric median for a given subset Ψ\Psi of Rec(P,H,ϕ)Rec(P,H,\phi) relative to dd, i.e. an element ψmedRec(P,H,ϕ)\psi_{med} \in Rec(P,H,\phi) such that ψΨd(ψmed,ψ)ψΨd(ψ,ψ) \sum_{\psi' \in \Psi} d(\psi_{med},\psi') \le \sum_{\psi' \in \Psi} d(\psi,\psi') holds for all ψRec(P,H,ϕ)\psi \in Rec(P,H,\phi)? For a model where so-called host-switches or transfers are not allowed, and for a commonly used metric dd called the edit-distance, we show that although the cardinality of Rec(P,H,ϕ)Rec(P,H,\phi) can be super-exponential, it is still possible to compute a geometric median for a set Ψ\Psi in Rec(P,H,ϕ)Rec(P,H,\phi) in polynomial time. We expect that this result could be useful for computing a summary or consensus for a set of reconciliations (e.g. for a set of suboptimal reconciliations).Comment: 12 pages, 1 figur

    Increase of Residential Electricity Consumption in Urban and Rural China by Province

    Get PDF
    We have developed a projection model to investigate the inter-regional and intra-regional urban-rural characteristics of the current residential electricity demand in China. We have specifically focused on residential electricity demand pertaining to three major appliances; refrigerator, color-TVs and air-conditioners for cooling. The model integrates factors such as population and income growth, and urban-rural disparity of individual factors are also reflected. The relationship between income growth and appliance penetration is investigated and future residential electricity demand is projected for urban and rural areas of individual province. We postulated three scenarios i.e. 1) Base Line scenario 2) Rural Growth Scenario 3) Energy EfficiencySc enario by 2020 and conducted scenario analysis. The Base Line case projected that the total urban REC will approximately triple and the total rural REC will almost five times by 2020. The expected population growth and falling household membership will increase urban REC, whereas the penetration increase is the main driving force for rural REC growth. The Rural Growth Scenario resulted in the largest total REC among all Scenarios, suggesting rural growth plays a key role in determining the future REC in China.Resource /Energy Economics and Policy,
    corecore