38 research outputs found

    The ZX-calculus is complete for stabilizer quantum mechanics

    Get PDF
    The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics, meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matrix mechanics. Here, we show that the ZX-calculus is complete for pure qubit stabilizer quantum mechanics, meaning any equality that can be derived using matrices can also be derived pictorially. The proof relies on bringing diagrams into a normal form based on graph states and local Clifford operations.Comment: 26 page

    Fibred Coalgebraic Logic and Quantum Protocols

    Full text link
    Motivated by applications in modelling quantum systems using coalgebraic techniques, we introduce a fibred coalgebraic logic. Our approach extends the conventional predicate lifting semantics with additional modalities relating conditions on different fibres. As this fibred setting will typically involve multiple signature functors, the logic incorporates a calculus of modalities enabling the construction of new modalities using various composition operations. We extend the semantics of coalgebraic logic to this setting, and prove that this extension respects behavioural equivalence. We show how properties of the semantics of modalities are preserved under composition operations, and then apply the calculational aspect of our logic to produce an expressive set of modalities for reasoning about quantum systems, building these modalities up from simpler components. We then demonstrate how these modalities can describe some standard quantum protocols. The novel features of our logic are shown to allow for a uniform description of unitary evolution, and support local reasoning such as "Alice's qubit satisfies condition" as is common when discussing quantum protocols.Comment: In Proceedings QPL 2013, arXiv:1412.791

    Certainty and Uncertainty in Quantum Information Processing

    Get PDF
    This survey, aimed at information processing researchers, highlights intriguing but lesser known results, corrects misconceptions, and suggests research areas. Themes include: certainty in quantum algorithms; the "fewer worlds" theory of quantum mechanics; quantum learning; probability theory versus quantum mechanics.Comment: Invited paper accompanying invited talk to AAAI Spring Symposium 2007. Comments, corrections, and suggestions would be most welcom

    Weakly complete axiomatization of exogenous quantum propositional logic

    Full text link
    A weakly complete finitary axiomatization for EQPL (exogenous quantum propositional logic) is presented. The proof is carried out using a non trivial extension of the Fagin-Halpern-Megiddo technique together with three Henkin style completions.Comment: 28 page
    corecore