5 research outputs found

    Realizing underactuated bipedal walking with torque controllers via the ideal model resolved motion method

    No full text
    This paper presents experimentally realized bipedal robotic walking using ideal torque controllers via a novel approach termed the ideal model resolved motion method (IM-RMM), where a system's ideal closed-loop dynamics are integrated forward from the actual state of the hardware to provide desired positions and velocity commands to a PD controller. By combining this method with gaits generated using the Human-Inspired Control framework, walking was realized experimentally on the DURUS platform, designed and built by SRI, and achieved with minimal system identification. For comparison, two controllers, one using feedback linearization and one using Control Lyapunov Function based Quadratic Programs (CLF-QP), both realized through IM-RMM, are compared with a benchmark procedure, the Hybrid Zero Dynamics reconstruction, that is shown to provide reliable walking in literature. The results of both simulations and experiments are presented, with the CLF-QP implemented via IM-RMM resulting in the lowest experimental specific energetic cost of transport of c_(et) = 0.63 achieved during sustained walking on the 31.5 kg bipedal robot

    Realizing underactuated bipedal walking with torque controllers via the ideal model resolved motion method

    No full text
    This paper presents experimentally realized bipedal robotic walking using ideal torque controllers via a novel approach termed the ideal model resolved motion method (IM-RMM), where a system's ideal closed-loop dynamics are integrated forward from the actual state of the hardware to provide desired positions and velocity commands to a PD controller. By combining this method with gaits generated using the Human-Inspired Control framework, walking was realized experimentally on the DURUS platform, designed and built by SRI, and achieved with minimal system identification. For comparison, two controllers, one using feedback linearization and one using Control Lyapunov Function based Quadratic Programs (CLF-QP), both realized through IM-RMM, are compared with a benchmark procedure, the Hybrid Zero Dynamics reconstruction, that is shown to provide reliable walking in literature. The results of both simulations and experiments are presented, with the CLF-QP implemented via IM-RMM resulting in the lowest experimental specific energetic cost of transport of c_(et) = 0.63 achieved during sustained walking on the 31.5 kg bipedal robot

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints
    corecore