199 research outputs found

    Realizations of self branched coverings of the 2-sphere

    Full text link
    For a degree d self branched covering of the 2-sphere, a notable combinatorial invariant is an integer partition of 2d -- 2, consisting of the multiplicities of the critical points. A finer invariant is the so called Hurwitz passport. The realization problem of Hurwitz passports remain largely open till today. In this article, we introduce two different types of finer invariants: a bipartite map and an incident matrix. We then settle completely their realization problem by showing that a map, or a matrix, is realized by a branched covering if and only if it satisfies a certain balanced condition. A variant of the bipartite map approach was initiated by W. Thurston. Our results shed some new lights to the Hurwitz passport problem

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime

    Anyons in Geometric Models of Matter

    Get PDF
    We show that the "geometric models of matter" approach proposed by the first author can be used to construct models of anyon quasiparticles with fractional quantum numbers, using 4-dimensional edge-cone orbifold geometries with orbifold singularities along embedded 2-dimensional surfaces. The anyon states arise through the braid representation of surface braids wrapped around the orbifold singularities, coming from multisections of the orbifold normal bundle of the embedded surface. We show that the resulting braid representations can give rise to a universal quantum computer.Comment: 22 pages LaTe

    Combinatorial models of expanding dynamical systems

    Full text link
    We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined "Julia set" of the generalized dynamical systems depends only on the associated iterated monodromy group. We show then that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules.Comment: The new version differs substantially from the first one. Many parts are moved to other (mostly future) papers, the main open question of the first version is solve
    corecore