3 research outputs found

    After Over-Privileged Permissions: Using Technology and Design to Create Legal Compliance

    Get PDF
    Consumers in the mobile ecosystem can putatively protect their privacy with the use of application permissions. However, this requires the mobile device owners to understand permissions and their privacy implications. Yet, few consumers appreciate the nature of permissions within the mobile ecosystem, often failing to appreciate the privacy permissions that are altered when updating an app. Even more concerning is the lack of understanding of the wide use of third-party libraries, most which are installed with automatic permissions, that is permissions that must be granted to allow the application to function appropriately. Unsurprisingly, many of these third-party permissions violate consumers’ privacy expectations and thereby, become “over-privileged” to the user. Consequently, an obscurity of privacy expectations between what is practiced by the private sector and what is deemed appropriate by the public sector is exhibited. Despite the growing attention given to privacy in the mobile ecosystem, legal literature has largely ignored the implications of mobile permissions. This article seeks to address this omission by analyzing the impacts of mobile permissions and the privacy harms experienced by consumers of mobile applications. The authors call for the review of industry self-regulation and the overreliance upon simple notice and consent. Instead, the authors set out a plan for greater attention to be paid to socio-technical solutions, focusing on better privacy protections and technology embedded within the automatic permission-based application ecosystem

    Runtime verification on data-carrying traces

    No full text
    Malfunctioning software systems can cause severe loss of money, sensitive data, or even human life. The ambition is therefore to verify these systems not only statically, but also monitor their behaviour at runtime. For the latter case, the temporal logic LTL---a de facto standard specification formalism in runtime verification---is widely used and well-understood. However, propositional variables are usually not a natural nor sufficient model to represent the behaviour of complex, interactive systems that can process arbitrary input values. Consequently, there is a demand for more expressive formalisms that are defined what we call traces with data, i.e., traces that contain propositions enriched with values from a (possibly) infinite domain. This thesis studies the runtime monitoring with data for a natural extension of LTL that includes first-order quantification, called LTLFO. The logic's quantifiers range over values that appear in a trace. Under assumptions laid out of what should arguably be considered a ``proper'' runtime monitor, this thesis first identifies and analyses the underlying decision problems of monitoring properties in LTL and LTLFO. Moreover, it proposes a monitoring procedure for the latter. A result is that LTLFO is undecidable, and the prefix problem too, which an online monitor has to preferably solve to coincide with monotonicity. Hence, the obtained monitor cannot be complete for LTLFO; however, this thesis proves the soundness of its construction and gives experimental results from an implementation, in order to justify its usefulness and efficiency in practice. The monitor is based on a new type of automaton, called spawning automaton; it helps to efficiently decide what parts of a possibly infinite state space need to be memorised at runtime. Furthermore, the problem occurs that not every property can be monitored trace-length independently, which is possible in LTL. For that reason, a hierarchy of effectively monitorable properties is proposed. It distinguishes properties for which a monitor requires only constant memory from ones for which a monitor inevitably has to grow ad infinitum, independently of how the future of a trace evolves. Last but not least, a proof of concept validates the monitoring means developed in this thesis on a widely established system with intensive data use: Malicious behaviour is checked on Android devices based on the most comprehensive malware set presently available. The overall detection and false positive rates are 93.9% and 28%, respectively. As a means of conducting the experiments and as a contribution in itself, an application-agnostic logging-layer for the Android system has been developed and its technical insights are explained. It aims at leveraging runtime verification techniques on Android, like other domain-specific instrumentation approaches did, such as AspectJ for Java
    corecore