8 research outputs found

    PULS on WARP Platform - Detailed Investigation of Real-Time Scheduling Performance

    Get PDF
    Software-defined Radio (SDR) platforms are popular tools to implement custom wireless network algorithms and architectures designs now-days. One of the most popular SDR platforms being used is the National Instrument USRP. In addition to having powerful hardware for supporting various physical layer (PHY) protocols, the software is no less significant for its flexibility to implement custom MAC layer algorithms. When presenting various Wi-Fi experimental results based on the platform, often time we are asked "What about WARP"? WARP is a wireless development platform developed by Mango Communications, integrating a high performance field programmable grid array (FPGA) from Xilinx, two flexible RF interfaces, and multiple peripherals to facilitate rapid prototyping of custom wireless designs. In the past, we’ve been focusing only on the USRP for prototyping, but WARP could be a potential candidate to outperform USRP under certain requirements. PULS[1] presented a new scheduling experiment that executed on the USRP with realistic packet arrival characteristics. The goal of this thesis is to perform a comprehensive comparison between the WARP and USRP platforms based on the PULSE architecture. On the other hand, we want to investigate the advantages and disadvantages of WARP compared to USRP under various requirements. From the experimental result, we see that PULS can be successfully implemented on the WARP platform, the throughput performance of PULS on the WARP platform is 146% of the USRP platform

    Limits and Capabilities of Cooperative Diversity: A Network and Protocol Perspective

    Get PDF
    Physical-layer cooperation has been demonstrated to vastly improve wireless link reliability and end-to-end throughput by exploiting spatial diversity. Nevertheless, its performance in operational networking environments is uncertain. Cooperative link gains can be potentially diminished by factors such as i) increased transmission footprint due to the activity of the cooperative relay, ii) non-ideal node location due to the structure of a planned network, or iii) the inability of cooperation protocols to recognize the channel's global state, hence leading to increased congestion. In this work, we identify and evaluate these key factors affecting the performance of cooperative techniques in small- and large-scale topologies. Our evaluation reveals that throughput gains from cooperation achieved in atomic, isolated topologies, decrease significantly when implemented at network-scale scenarios. Furthermore, our study provides a deeper understanding of the regimes in which cooperation performs poorly, and can help in the design of effective protocol solutions for such cases

    Distributed Protocols for Signal-Scale Cooperation

    Get PDF
    Signal-scale cooperation is a class of techniques designed to harness the same gains offered by multi-antenna communication in scenarios where devices are too small to contain an array of antennas. While the potential improvements in reliability at the physical layer are well known, three key challenges must be addressed to harness these gains at the medium access layer: (a) the distributed synchronization and coordination of devices to enable cooperative behavior, (b) the conservation of energy for devices cooperating to help others, and (c) the management of increased inter-device interference caused by multiple spatially separate transmissions in a cooperative network. In this thesis, we offer three contributions that respectively answer the above three challenges. First, we present two novel cooperative medium access control protocols: Distributed On-demand Cooperation (DOC) and Power-controlled Distributed On-demand Cooperation (PDOC). These protocols utilize negative acknowledgments to synchronize and trigger cooperative relay transmissions in a completely distributed manner. Furthermore, they avoid cooperative transmissions that would likely be unhelpful to the source of the traffic. Second, we present an energy conservation algorithm known as Distributed Energy-Conserving Cooperation (DECC). DECC allows devices to alter their cooperative behavior based on measured changes to their own energy efficiency. With DECC, devices become self-aware of the impact of signal-scale cooperation -- they explicitly monitor their own performance and scale the degree to which they cooperate with others accordingly. Third and finally, we present a series of protocols to combat the challenge of inter-device interference. Whereas energy efficiency can be addressed by a self-aware device monitoring its own performance, inter-device interference requires devices with network awareness that understand the impact of their behavior on the devices around them. We investigate and quantify the impact of incomplete network awareness by proposing a modeling approximation to derive relaying policy behaviors. We then map these policies to protocols for wireless channels

    Physical Layer Cooperation:Theory and Practice

    Get PDF
    Information theory has long pointed to the promise of physical layer cooperation in boosting the spectral efficiency of wireless networks. Yet, the optimum relaying strategy to achieve the network capacity has till date remained elusive. Recently however, a relaying strategy termed Quantize-Map-and-Forward (QMF) was proved to achieve the capacity of arbitrary wireless networks within a bounded additive gap. This thesis contributes to the design, analysis and implementation of QMF relaying by optimizing its performance for small relay networks, proposing low-complexity iteratively decodable codes, and carrying out over-the-air experiments using software-radio testbeds to assess real-world potential and competitiveness. The original QMF scheme has each relay performing the same operation, agnostic to the network topology and the channel state information (CSI); this facilitates the analysis for arbitrary networks, yet comes at a performance penalty for small networks and medium SNR regimes. In this thesis, we demonstrate the benefits one can gain for QMF if we optimize its performance by leveraging topological and channel state information. We show that for the N-relay diamond network, by taking into account topological information, we can exponentially reduce the QMF additive approximation gap from Θ(N)\Theta(N) bits/s/Hz to Θ(logN)\Theta(\log N) bits/s/Hz, while for the one-relay and two-relay networks, use of topological information and CSI can help to gain as much as 66 dB. Moreover, we explore what benefits we can realize if we jointly optimize QMF and half-duplex scheduling, as well as if we employ hybrid schemes that combine QMF and Decode-and-Forward (DF) relay operations. To take QMF from being a purely information-theoretic idea to an implementable strategy, we derive a structure employing Low-Density-Parity-Check (LDPC) ensembles for the relay node operations and message-passing algorithms for decoding. We demonstrate through extensive simulation results over the full-duplex diamond network, that our designs offer a robust performance over fading channels and achieves the full diversity order of our network at moderate SNRs. Next, we explore the potential real-world impact of QMF and present the design and experimental evaluation of a wireless system that exploits relaying in the context of WiFi. We deploy three main competing strategies that have been proposed for relaying, Amplify-and-Forward (AF), DF and QMF, on the WarpLab software radio platform. We present experimental results--to the best of our knowledge, the first ones--that compare QMF, AF and DF in a realistic indoor setting. We find that QMF is a competitive scheme to the other two, offering in some cases up to 12% throughput benefits and up to 60% improvement in frame error-rates over the next best scheme. We then present a more advanced architecture for physical layer cooperation (termed QUILT), that seamlessly adapts to the underlying network configuration to achieve competitive or better performance than the best current approaches. It combines on-demand, opportunistic use of DF or QMF followed by interleaving at the relay, with hybrid decoding at the destination that extracts information from even potentially undecodable received frames. We theoretically quantify how our design choices affect the system performance. We also deploy QUILT on WarpLab and show through over-the-air experiments up to 55 times FER improvement over the next best cooperative protocol

    Design, Implementation and Characterization of a Cooperative Communications System

    Get PDF
    Cooperative communications is a class of techniques which seek to improve reliability and throughput in wireless systems by pooling the resources of distributed nodes. While cooperation can occur at different network layers and time scales, physical layer cooperation at symbol time scales offers the largest benefit. However, symbol level cooperation poses significant implementation challenges, especially in the context of a network of distributed nodes. We first present the design and implementation of a complete cooperative physical layer transceiver, built from scratch on the Wireless Open-Access Research Platform (WARP). In our implementation fully distributed nodes employ physical layer cooperation at symbol time scales without requiring a central synchronization source. Our design supports per-packet selection of non-cooperative or cooperative communication, with cooperative links utilizing either amplify-and-forward or decode-and-forward relaying. A single design implements transmission, reception and relaying, allowing each node to assume the role of source, destination or relay per packet. We also present experimental methodologies for evaluating our design and extensive experimental results of our transceiver's performance under a variety of topologies and propagation conditions. Our methods are designed to test both overall performance and to isolate and understand the underlying causes of performance limitations. Our results clearly demonstrate significant performance gains (more than 50× improvement in PER in some topologies) provided by physical layer cooperation even when subject to the constraints of a real-time implementation. As with all our work on WARP, our transceiver design and experimental framework are available via the open-source WARP repository for use by other wireless researchers
    corecore