109 research outputs found

    Real-time simulation and visualization of human vision through eyeglasses on the GPU

    Full text link

    UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture

    Full text link
    We present UnrealEgo, i.e., a new large-scale naturalistic dataset for egocentric 3D human pose estimation. UnrealEgo is based on an advanced concept of eyeglasses equipped with two fisheye cameras that can be used in unconstrained environments. We design their virtual prototype and attach them to 3D human models for stereo view capture. We next generate a large corpus of human motions. As a consequence, UnrealEgo is the first dataset to provide in-the-wild stereo images with the largest variety of motions among existing egocentric datasets. Furthermore, we propose a new benchmark method with a simple but effective idea of devising a 2D keypoint estimation module for stereo inputs to improve 3D human pose estimation. The extensive experiments show that our approach outperforms the previous state-of-the-art methods qualitatively and quantitatively. UnrealEgo and our source codes are available on our project web page.Comment: 21 pages, 10 figures, 10 tables; project page: https://4dqv.mpi-inf.mpg.de/UnrealEgo

    VisionaryVR: An Optical Simulation Tool for Evaluating and Optimizing Vision Correction Solutions in Virtual Reality

    Full text link
    Developing and evaluating vision science methods require robust and efficient tools for assessing their performance in various real-world scenarios. This study presents a novel virtual reality (VR) simulation tool that simulates real-world optical methods while giving high experimental control to the experiment. The tool incorporates an experiment controller, to smoothly and easily handle multiple conditions, a generic eye-tracking controller, that works with most common VR eye-trackers, a configurable defocus simulator, and a generic VR questionnaire loader to assess participants' behavior in virtual reality. This VR-based simulation tool bridges the gap between theoretical and applied research on new optical methods, corrections, and therapies. It enables vision scientists to increase their research tools with a robust, realistic, and fast research environment

    Computational See-Through Near-Eye Displays

    Get PDF
    See-through near-eye displays with the form factor and field of view of eyeglasses are a natural choice for augmented reality systems: the non-encumbering size enables casual and extended use and large field of view enables general-purpose spatially registered applications. However, designing displays with these attributes is currently an open problem. Support for enhanced realism through mutual occlusion and the focal depth cues is also not found in eyeglasses-like displays. This dissertation provides a new strategy for eyeglasses-like displays that follows the principles of computational displays, devices that rely on software as a fundamental part of image formation. Such devices allow more hardware simplicity and flexibility, showing greater promise of meeting form factor and field of view goals while enhancing realism. This computational approach is realized in two novel and complementary see-through near-eye display designs. The first subtractive approach filters omnidirectional light through a set of optimized patterns displayed on a stack of spatial light modulators, reproducing a light field corresponding to in-focus imagery. The design is thin and scales to wide fields of view; see-through is achieved with transparent components placed directly in front of the eye. Preliminary support for focal cues and environment occlusion is also demonstrated. The second additive approach uses structured point light illumination to form an image with a minimal set of rays. Each of an array of defocused point light sources is modulated by a region of a spatial light modulator, essentially encoding an image in the focal blur. See-through is also achieved with transparent components and thin form factors and wide fields of view (>= 100 degrees) are demonstrated. The designs are examined in theoretical terms, in simulation, and through prototype hardware with public demonstrations. This analysis shows that the proposed computational near-eye display designs offer a significantly different set of trade-offs than conventional optical designs. Several challenges remain to make the designs practical, most notably addressing diffraction limits.Doctor of Philosoph

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation

    Live Video and Image Recolouring for Colour Vision Deficient Patients

    Get PDF
    Colour Vision Deficiency (CVD) is an important issue for a significant population across the globe. There are several types of CVD\u27s, such as monochromacy, dichromacy, trichromacy, and anomalous trichromacy. Each of these categories contain specific other subtypes. The aim of this research is to device a scheme to address CVD by using variations in pixel plotting of colours to capture colour disparities and perform colour compensation. The proposed scheme recolours the video and images by colour contrast variation of each colour for CVD patients, and depending on the type of deficiency, it is able to provide live results. Different types of CVD’s can be identified and cured by changing the particular colour related to it and based upon the type of diseases, it performs RGB (Red, Green, and Blue) to LMS (Long, Medium, and Short) transformation. This helps in colour identification and also adjustments of colour contrasts. The processing and rendering of recoloured video and images, allows the affected patients with CVD to see perfect shades in the recoloured frames of video or images and other modes of files. In this thesis, we propose an efficient recolouring algorithm with a strong focus on real-time applications that is capable of providing different recoloured outputs based on specific types of CVD

    CLERA: A Unified Model for Joint Cognitive Load and Eye Region Analysis in the Wild

    Full text link
    Non-intrusive, real-time analysis of the dynamics of the eye region allows us to monitor humans' visual attention allocation and estimate their mental state during the performance of real-world tasks, which can potentially benefit a wide range of human-computer interaction (HCI) applications. While commercial eye-tracking devices have been frequently employed, the difficulty of customizing these devices places unnecessary constraints on the exploration of more efficient, end-to-end models of eye dynamics. In this work, we propose CLERA, a unified model for Cognitive Load and Eye Region Analysis, which achieves precise keypoint detection and spatiotemporal tracking in a joint-learning framework. Our method demonstrates significant efficiency and outperforms prior work on tasks including cognitive load estimation, eye landmark detection, and blink estimation. We also introduce a large-scale dataset of 30k human faces with joint pupil, eye-openness, and landmark annotation, which aims to support future HCI research on human factors and eye-related analysis.Comment: ACM Transactions on Computer-Human Interactio

    Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Get PDF
    The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications

    Generalized Anthropomorphic Functional Grasping with Minimal Demonstrations

    Full text link
    This article investigates the challenge of achieving functional tool-use grasping with high-DoF anthropomorphic hands, with the aim of enabling anthropomorphic hands to perform tasks that require human-like manipulation and tool-use. However, accomplishing human-like grasping in real robots present many challenges, including obtaining diverse functional grasps for a wide variety of objects, handling generalization ability for kinematically diverse robot hands and precisely completing object shapes from a single-view perception. To tackle these challenges, we propose a six-step grasp synthesis algorithm based on fine-grained contact modeling that generates physically plausible and human-like functional grasps for category-level objects with minimal human demonstrations. With the contact-based optimization and learned dense shape correspondence, the proposed algorithm is adaptable to various objects in same category and a board range of robot hand models. To further demonstrate the robustness of the framework, over 10K functional grasps are synthesized to train our neural network, named DexFG-Net, which generates diverse sets of human-like functional grasps based on the reconstructed object model produced by a shape completion module. The proposed framework is extensively validated in simulation and on a real robot platform. Simulation experiments demonstrate that our method outperforms baseline methods by a large margin in terms of grasp functionality and success rate. Real robot experiments show that our method achieved an overall success rate of 79\% and 68\% for tool-use grasp on 3-D printed and real test objects, respectively, using a 5-Finger Schunk Hand. The experimental results indicate a step towards human-like grasping with anthropomorphic hands.Comment: 20 pages, 23 figures and 7 table
    • …
    corecore