4 research outputs found

    FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras

    Full text link
    In this paper, we develop deep spatio-temporal neural networks to sequentially count vehicles from low quality videos captured by city cameras (citycams). Citycam videos have low resolution, low frame rate, high occlusion and large perspective, making most existing methods lose their efficacy. To overcome limitations of existing methods and incorporate the temporal information of traffic video, we design a novel FCN-rLSTM network to jointly estimate vehicle density and vehicle count by connecting fully convolutional neural networks (FCN) with long short term memory networks (LSTM) in a residual learning fashion. Such design leverages the strengths of FCN for pixel-level prediction and the strengths of LSTM for learning complex temporal dynamics. The residual learning connection reformulates the vehicle count regression as learning residual functions with reference to the sum of densities in each frame, which significantly accelerates the training of networks. To preserve feature map resolution, we propose a Hyper-Atrous combination to integrate atrous convolution in FCN and combine feature maps of different convolution layers. FCN-rLSTM enables refined feature representation and a novel end-to-end trainable mapping from pixels to vehicle count. We extensively evaluated the proposed method on different counting tasks with three datasets, with experimental results demonstrating their effectiveness and robustness. In particular, FCN-rLSTM reduces the mean absolute error (MAE) from 5.31 to 4.21 on TRANCOS, and reduces the MAE from 2.74 to 1.53 on WebCamT. Training process is accelerated by 5 times on average.Comment: Accepted by International Conference on Computer Vision (ICCV), 201

    Understanding Traffic Density from Large-Scale Web Camera Data

    Full text link
    Understanding traffic density from large-scale web camera (webcam) videos is a challenging problem because such videos have low spatial and temporal resolution, high occlusion and large perspective. To deeply understand traffic density, we explore both deep learning based and optimization based methods. To avoid individual vehicle detection and tracking, both methods map the image into vehicle density map, one based on rank constrained regression and the other one based on fully convolution networks (FCN). The regression based method learns different weights for different blocks in the image to increase freedom degrees of weights and embed perspective information. The FCN based method jointly estimates vehicle density map and vehicle count with a residual learning framework to perform end-to-end dense prediction, allowing arbitrary image resolution, and adapting to different vehicle scales and perspectives. We analyze and compare both methods, and get insights from optimization based method to improve deep model. Since existing datasets do not cover all the challenges in our work, we collected and labelled a large-scale traffic video dataset, containing 60 million frames from 212 webcams. Both methods are extensively evaluated and compared on different counting tasks and datasets. FCN based method significantly reduces the mean absolute error from 10.99 to 5.31 on the public dataset TRANCOS compared with the state-of-the-art baseline.Comment: Accepted by CVPR 2017. Preprint version was uploaded on http://welcome.isr.tecnico.ulisboa.pt/publications/understanding-traffic-density-from-large-scale-web-camera-data

    Moving Object Based Collision-Free Video Synopsis

    Full text link
    Video synopsis, summarizing a video to generate a shorter video by exploiting the spatial and temporal redundancies, is important for surveillance and archiving. Existing trajectory-based video synopsis algorithms will not able to work in real time, because of the complexity due to the number of object tubes that need to be included in the complex energy minimization algorithm. We propose a real-time algorithm by using a method that incrementally stitches each frame of the synopsis by extracting object frames from the user specified number of tubes in the buffer in contrast to global energy-minimization based systems. This also gives flexibility to the user to set the threshold of maximum number of objects in the synopsis video according his or her tracking ability and creates collision-free summarized videos which are visually pleasing. Experiments with six common test videos, indoors and outdoors with many moving objects, show that the proposed video synopsis algorithm produces better frame reduction rates than existing approaches.Comment: The summarized output videos are available at https://anton-jeran.github.io/M2SYN

    Forensic Video Analytic Software

    Full text link
    Law enforcement officials heavily depend on Forensic Video Analytic (FVA) Software in their evidence extraction process. However present-day FVA software are complex, time consuming, equipment dependent and expensive. Developing countries struggle to gain access to this gateway to a secure haven. The term forensic pertains the application of scientific methods to the investigation of crime through post-processing, whereas surveillance is the close monitoring of real-time feeds. The principle objective of this Final Year Project was to develop an efficient and effective FVA Software, addressing the shortcomings through a stringent and systematic review of scholarly research papers, online databases and legal documentation. The scope spans multiple object detection, multiple object tracking, anomaly detection, activity recognition, tampering detection, general and specific image enhancement and video synopsis. Methods employed include many machine learning techniques, GPU acceleration and efficient, integrated architecture development both for real-time and postprocessing. For this CNN, GMM, multithreading and OpenCV C++ coding were used. The implications of the proposed methodology would rapidly speed up the FVA process especially through the novel video synopsis research arena. This project has resulted in three research outcomes Moving Object Based Collision Free Video Synopsis, Forensic and Surveillance Analytic Tool Architecture and Tampering Detection Inter-Frame Forgery. The results include forensic and surveillance panel outcomes with emphasis on video synopsis and Sri Lankan context. Principal conclusions include the optimization and efficient algorithm integration to overcome limitations in processing power, memory and compromise between real-time performance and accuracy.Comment: The Forensic Video Analytic Software demo video is available https://www.youtube.com/watch?v=vsZlYKQxSk
    corecore