1,053 research outputs found

    Unmasking Communication Partners: A Low-Cost AI Solution for Digitally Removing Head-Mounted Displays in VR-Based Telepresence

    Full text link
    Face-to-face conversation in Virtual Reality (VR) is a challenge when participants wear head-mounted displays (HMD). A significant portion of a participant's face is hidden and facial expressions are difficult to perceive. Past research has shown that high-fidelity face reconstruction with personal avatars in VR is possible under laboratory conditions with high-cost hardware. In this paper, we propose one of the first low-cost systems for this task which uses only open source, free software and affordable hardware. Our approach is to track the user's face underneath the HMD utilizing a Convolutional Neural Network (CNN) and generate corresponding expressions with Generative Adversarial Networks (GAN) for producing RGBD images of the person's face. We use commodity hardware with low-cost extensions such as 3D-printed mounts and miniature cameras. Our approach learns end-to-end without manual intervention, runs in real time, and can be trained and executed on an ordinary gaming computer. We report evaluation results showing that our low-cost system does not achieve the same fidelity of research prototypes using high-end hardware and closed source software, but it is capable of creating individual facial avatars with person-specific characteristics in movements and expressions.Comment: 9 pages, IEEE 3rd International Conference on Artificial Intelligence & Virtual Realit

    3D Human Face Reconstruction and 2D Appearance Synthesis

    Get PDF
    3D human face reconstruction has been an extensive research for decades due to its wide applications, such as animation, recognition and 3D-driven appearance synthesis. Although commodity depth sensors are widely available in recent years, image based face reconstruction are significantly valuable as images are much easier to access and store. In this dissertation, we first propose three image-based face reconstruction approaches according to different assumption of inputs. In the first approach, face geometry is extracted from multiple key frames of a video sequence with different head poses. The camera should be calibrated under this assumption. As the first approach is limited to videos, we propose the second approach then focus on single image. This approach also improves the geometry by adding fine grains using shading cue. We proposed a novel albedo estimation and linear optimization algorithm in this approach. In the third approach, we further loose the constraint of the input image to arbitrary in the wild images. Our proposed approach can robustly reconstruct high quality model even with extreme expressions and large poses. We then explore the applicability of our face reconstructions on four interesting applications: video face beautification, generating personalized facial blendshape from image sequences, face video stylizing and video face replacement. We demonstrate great potentials of our reconstruction approaches on these real-world applications. In particular, with the recent surge of interests in VR/AR, it is increasingly common to see people wearing head-mounted displays. However, the large occlusion on face is a big obstacle for people to communicate in a face-to-face manner. Our another application is that we explore hardware/software solutions for synthesizing the face image with presence of HMDs. We design two setups (experimental and mobile) which integrate two near IR cameras and one color camera to solve this problem. With our algorithm and prototype, we can achieve photo-realistic results. We further propose a deep neutral network to solve the HMD removal problem considering it as a face inpainting problem. This approach doesn\u27t need special hardware and run in real-time with satisfying results

    Communication in Immersive Social Virtual Reality: A Systematic Review of 10 Years' Studies

    Full text link
    As virtual reality (VR) technologies have improved in the past decade, more research has investigated how they could support more effective communication in various contexts to improve collaboration and social connectedness. However, there was no literature to summarize the uniqueness VR provided and put forward guidance for designing social VR applications for better communication. To understand how VR has been designed and used to facilitate communication in different contexts, we conducted a systematic review of the studies investigating communication in social VR in the past ten years by following the PRISMA guidelines. We highlight current practices and challenges and identify research opportunities to improve the design of social VR to better support communication and make social VR more accessible.Comment: Chinese CHI '22: The Tenth International Symposium of Chinese CHI (Chinese CHI 2022
    corecore