736 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Smartphone-based user positioning in a multiple-user context with Wi-Fi and Bluetooth

    Get PDF
    In a multiuser context, the Bluetooth data from the smartphone could give an approximation of the distance between users. Meanwhile, the Wi-Fi data can be used to calculate the user's position directly. However, both the Wi-Fi-based position outputs and Bluetooth-based distances are affected by some degree of noise. In our work, we propose several approaches to combine the two types of outputs for improving the tracking accuracy in the context of collaborative positioning. The two proposed approaches attempt to build a model for measuring the errors of the Bluetooth output and Wi-Fi output. In a non-temporal approach, the model establishes the relationship in a specific interval of the Bluetooth output and Wi-Fi output. In a temporal approach, the error measurement model is expanded to include the time component between users' movement. To evaluate the performance of the two approaches, we collected the data from several multiuser scenarios in indoor environment. The results show that the proposed approaches could reach a distance error around 3.0m for 75 percent of time, which outperforms the positioning results of the standard Wi-Fi fingerprinting model.Comment: International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sep 2018, Nantes, Franc

    The IPIN 2019 Indoor Localisation Competition - Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    The IPIN 2019 Indoor Localisation Competition—Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking

    Get PDF
    Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios.Fil: Wang, Wenxu. Guandong University Of Technology; ChinaFil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Fu, Minyue. Universidad de Newcastle; Australi

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    A WiFi RSS-RTT Indoor Positioning Model Based on Dynamic Model Switching Algorithm

    Get PDF
    The advances in WiFi technology have encouraged the development of numerous indoor positioning systems. However, their performance varies significantly across different indoor environments, making it challenging in identifying the most suitable system for all scenarios. To address this challenge, we propose an algorithm that dynamically selects the most optimal WiFi positioning model for each location. Our algorithm employs a Machine Learning weighted model selection algorithm, trained on raw WiFi RSS, raw WiFi RTT data, statistical RSS & RTT measures, and Access Point line-of-sight information. We tested our algorithm in four complex indoor environments, and compared its performance to traditional WiFi indoor positioning models and state-of-the-art stacking models, demonstrating an improvement of up to 1.8 meters on average

    WIFI BASED INDOOR POSITIONING - A MACHINE LEARNING APPROACH

    Get PDF
    Navigation has become much easier these days mainly due to advancement in satellite technology. The current navigation systems provide better positioning accuracy but are limited to outdoors. When it comes to the indoor spaces such as airports, shopping malls, hospitals or office buildings, to name a few, it will be challenging to get good positioning accuracy with satellite signals due to thick walls and roofs as obstacles. This gap led to a whole new area of research in the field of indoor positioning. Many researches have been conducting experiments on different technologies and successful outcomes have beenseen. Each technology providing indoor positioning capability has its own limitations. In this thesis, different radio frequency (RF) and non-radio frequency (Non-RF) technologies are discussed but focus is set on Wi-Fi for indoor positioning. A demo indoor positioning app is developed for the Technobothnia building at the University of Vaasa premises. This building is already equipped with Wi-Fi infrastructure. A floor plan of the building, radio maps and a fingerprinting database with Wi-Fi signal strength measurements is created with help of tools from HERE technology. The app provides real-time positioning and routing as a future visitor tool. With the exceeding amounts of available data, one of the highly popular fields is applying Machine Learning (ML) to data. It can be applied in many disciplines from medicine to space. In ML, algorithms learn from the data and make predictions. Due to the significant growth in various sensor technologies and computational power, large amounts of data can be stored and processed. Here, the ML approach is also taken to the indoor positioning challenge. An open-source Wi-Fi fingerprinting dataset is obtained from Tampere University and ML algorithms are applied on it for performing indoor positioning. Algorithms are trained with received signal strength (RSS) values with their respective reference coordinates and the user location can be predicted. The thesis provides a performance analysis of different algorithms suitable for future mobile implementations

    A survey of deep learning approaches for WiFi-based indoor positioning

    Get PDF
    One of the most popular approaches for indoor positioning is WiFi fingerprinting, which has been intrinsically tackled as a traditional machine learning problem since the beginning, to achieve a few metres of accuracy on average. In recent years, deep learning has emerged as an alternative approach, with a large number of publications reporting sub-metre positioning accuracy. Therefore, this survey presents a timely, comprehensive review of the most interesting deep learning methods being used for WiFi fingerprinting. In doing so, we aim to identify the most efficient neural networks, under a variety of positioning evaluation metrics for different readers. We will demonstrate that despite the new emerging WiFi signal measures (i.e. CSI and RTT), RSS produces competitive performances under deep learning. We will also show that simple neural networks outperform more complex ones in certain environments
    corecore