2 research outputs found

    Investigation of a holistic human-computer interaction (HCI) framework to support the design of extended reality (XR) based training simulators

    Get PDF
    In recent years, the use of Extended Reality (XR) based simulators for training has increased rapidly. In this context, there is a need to explore novel HCI-based approaches to design more effective 3D training environments. A major impediment in this research area is the lack of an HCI-based framework that is holistic and serves as a foundation to integrate the design and assessment of HCI-based attributes such as affordance, cognitive load, and user-friendliness. This research addresses this need by investigating the creation of a holistic framework along with a process for designing, building, and assessing training simulators using such a framework as a foundation. The core elements of the proposed framework include the adoption of participatory design principles, the creation of information-intensive process models of target processes (relevant to the training activities), and design attributes related to affordance and cognitive load. A new attribute related to affordance of 3D scenes is proposed (termed dynamic affordance) and its role in impacting user comprehension in data-rich 3D training environments is studied. The framework is presented for the domain of orthopedic surgery. Rigorous user-involved assessment of the framework and simulation approach has highlighted the positive impact of the HCI-based framework and attributes on the acquisition of skills and knowledge by healthcare users
    corecore