12 research outputs found

    MODES: model-based optimization on distributed embedded systems

    Get PDF
    The predictive performance of a machine learning model highly depends on the corresponding hyper-parameter setting. Hence, hyper-parameter tuning is often indispensable. Normally such tuning requires the dedicated machine learning model to be trained and evaluated on centralized data to obtain a performance estimate. However, in a distributed machine learning scenario, it is not always possible to collect all the data from all nodes due to privacy concerns or storage limitations. Moreover, if data has to be transferred through low bandwidth connections it reduces the time available for tuning. Model-Based Optimization (MBO) is one state-of-the-art method for tuning hyper-parameters but the application on distributed machine learning models or federated learning lacks research. This work proposes a framework MODES that allows to deploy MBO on resource-constrained distributed embedded systems. Each node trains an individual model based on its local data. The goal is to optimize the combined prediction accuracy. The presented framework offers two optimization modes: (1) MODES-B considers the whole ensemble as a single black box and optimizes the hyper-parameters of each individual model jointly, and (2) MODES-I considers all models as clones of the same black box which allows it to efficiently parallelize the optimization in a distributed setting. We evaluate MODES by conducting experiments on the optimization for the hyper-parameters of a random forest and a multi-layer perceptron. The experimental results demonstrate that, with an improvement in terms of mean accuracy (MODES-B), run-time efficiency (MODES-I), and statistical stability for both modes, MODES outperforms the baseline, i.e., carry out tuning with MBO on each node individually with its local sub-data set

    Bi-fidelity Evolutionary Multiobjective Search for Adversarially Robust Deep Neural Architectures

    Full text link
    Deep neural networks have been found vulnerable to adversarial attacks, thus raising potentially concerns in security-sensitive contexts. To address this problem, recent research has investigated the adversarial robustness of deep neural networks from the architectural point of view. However, searching for architectures of deep neural networks is computationally expensive, particularly when coupled with adversarial training process. To meet the above challenge, this paper proposes a bi-fidelity multiobjective neural architecture search approach. First, we formulate the NAS problem for enhancing adversarial robustness of deep neural networks into a multiobjective optimization problem. Specifically, in addition to a low-fidelity performance predictor as the first objective, we leverage an auxiliary-objective -- the value of which is the output of a surrogate model trained with high-fidelity evaluations. Secondly, we reduce the computational cost by combining three performance estimation methods, i.e., parameter sharing, low-fidelity evaluation, and surrogate-based predictor. The effectiveness of the proposed approach is confirmed by extensive experiments conducted on CIFAR-10, CIFAR-100 and SVHN datasets

    EvoFed: Leveraging Evolutionary Strategies for Communication-Efficient Federated Learning

    Full text link
    Federated Learning (FL) is a decentralized machine learning paradigm that enables collaborative model training across dispersed nodes without having to force individual nodes to share data. However, its broad adoption is hindered by the high communication costs of transmitting a large number of model parameters. This paper presents EvoFed, a novel approach that integrates Evolutionary Strategies (ES) with FL to address these challenges. EvoFed employs a concept of 'fitness-based information sharing', deviating significantly from the conventional model-based FL. Rather than exchanging the actual updated model parameters, each node transmits a distance-based similarity measure between the locally updated model and each member of the noise-perturbed model population. Each node, as well as the server, generates an identical population set of perturbed models in a completely synchronized fashion using the same random seeds. With properly chosen noise variance and population size, perturbed models can be combined to closely reflect the actual model updated using the local dataset, allowing the transmitted similarity measures (or fitness values) to carry nearly the complete information about the model parameters. As the population size is typically much smaller than the number of model parameters, the savings in communication load is large. The server aggregates these fitness values and is able to update the global model. This global fitness vector is then disseminated back to the nodes, each of which applies the same update to be synchronized to the global model. Our analysis shows that EvoFed converges, and our experimental results validate that at the cost of increased local processing loads, EvoFed achieves performance comparable to FedAvg while reducing overall communication requirements drastically in various practical settings

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research
    corecore