661,691 research outputs found

    Real fluid properties of normal and parahydrogen

    Get PDF
    Computer program calculates the real fluid properties of normal or parahydrogen using a library of single function calls without initial estimates. Accurate transport and thermodynamic properties of molecular hydrogen are needed for advanced propulsion systems

    The Saturated and Supercritical Stirling Cycle Thermodynamic Heat Engine Cycle

    Full text link
    On the assumption that experimentally validated tabulated thermodynamic properties of saturated fluids published by the National Institute of Standards and Technology are accurate, a theoretical thermodynamic cycle can be demonstrated that produces a net-negative entropy generation to the universe. The experimental data on the internal energy can also be used to obtain a simple, empirical equation for the change in internal energy of a real fluid undergoing isothermal expansion and compression. This demonstration provides experimental evidence to the theory that temperature-dependent intermolecular attractive forces can be an entropic force that can enhance the thermodynamic efficiency of a real-fluid macroscopic heat engine to exceed that of the Carnot efficiency.Comment: 27 pages, No figures, 21 tables, 52 reference

    Entropy, diffusivity and the energy landscape of a water-like fluid

    Full text link
    Molecular dynamics simulations and instantaneous normal mode (INM) analysis of a fluid with core-softened pair interactions and water-like liquid-state anomalies are performed to obtain an understanding of the relationship between thermodynamics, transport properties and the poten- tial energy landscape. Rosenfeld-scaling of diffusivities with the thermodynamic excess and pair correlation entropy is demonstrated for this model. The INM spectra are shown to carry infor- mation about the dynamical consequences of the interplay between length scales characteristic of anomalous fluids, such as bimodality of the real and imaginary branches of the frequency distribu- tion. The INM spectral information is used to partition the liquid entropy into two contributions associated with the real and imaginary frequency modes; only the entropy contribution from the imaginary branch captures the non-monotonic behaviour of the excess entropy and diffusivity in the anomalous regime of the fluid

    Low Friction Flows of Liquids at Nanopatterned Interfaces

    Full text link
    With the recent important development of microfluidic systems, miniaturization of flow devices has become a real challenge. Microchannels, however, are characterized by a large surface to volume ratio, so that surface properties strongly affect flow resistance in submicrometric devices. We present here results showing that the concerted effect of wetting . properties and surface roughness may considerably reduce friction of the fluid past the boundaries. The slippage of the fluid at the channel boundaries is shown to be drastically increased by using surfaces that are patterned at the nanometer scale. This effect occurs in the regime where the surface pattern is partially dewetted, in the spirit of the 'superhydrophobic' effects that have been recently discovered at the macroscopic scales. Our results show for the first time that, in contrast to the common belief, surface friction may be reduced by surface roughness. They also open the possibility of a controlled realization of the 'nanobubbles' that have long been suspected to play a role in interfacial slippag

    Mesoscopic modeling of heterogeneous boundary conditions for microchannel flows

    Get PDF
    We present a mesoscopic model of the fluid-wall interactions for flows in microchannel geometries. We define a suitable implementation of the boundary conditions for a discrete version of the Boltzmann equations describing a wall-bounded single phase fluid. We distinguish different slippage properties on the surface by introducing a slip function, defining the local degree of slip for mesoscopic molecules at the boundaries. The slip function plays the role of a renormalizing factor which incorporates, with some degree of arbitrariness, the microscopic effects on the mesoscopic description. We discuss the mesoscopic slip properties in terms of slip length, slip velocity, pressure drop reduction (drag reduction), and mass flow rate in microchannels as a function of the degree of slippage and of its spatial distribution and localization, the latter parameter mimicking the degree of roughness of the ultra-hydrophobic material in real experiments. We also discuss the increment of the slip length in the transition regime, i.e. at O(1) Knudsen numbers. Finally, we compare our results with Molecular Dynamics investigations of the dependency of the slip length on the mean channel pressure and local slip properties (Cottin-Bizonne et al. 2004) and with the experimental dependency of the pressure drop reduction on the percentage of hydrophobic material deposited on the surface -- Ou et al. (2004).Comment: 21 pages, 10 figure

    Limits of structure stability of simple liquids revealed by study of relative fluctuations

    Full text link
    We analyse the inverse reduced fluctuations (inverse ratio of relative volume fluctuation to its value in the hypothetical case where the substance acts an ideal gas for the same temperature-volume parameters) for simple liquids from experimental acoustic and thermophysical data along a coexistence line for both liquid and vapour phases. It has been determined that this quantity has a universal exponential character within the region close to the melting point. This behaviour satisfies the predictions of the mean-field (grand canonical ensemble) lattice fluid model and relates to the constant average structure of a fluid, i.e. redistribution of the free volume complementary to a number of vapour particles. The interconnection between experiment-based fluctuational parameters and self-diffusion characteristics is discussed. These results may suggest experimental methods for determination of self-diffusion and structural properties of real substances.Comment: 5 pages, 4 figure
    corecore