2 research outputs found

    On the Role of Hash-Based Signatures in Quantum-Safe Internet of Things:Current Solutions and Future Directions

    Get PDF
    The Internet of Things (IoT) is gaining ground as a pervasive presence around us by enabling miniaturized things with computation and communication capabilities to collect, process, analyze, and interpret information. Consequently, trustworthy data act as fuel for applications that rely on the data generated by these things, for critical decision-making processes, data debugging, risk assessment, forensic analysis, and performance tuning. Currently, secure and reliable data communication in IoT is based on public-key cryptosystems such as Elliptic Curve Cryptosystem (ECC). Nevertheless, reliance on the security of de-facto cryptographic primitives is at risk of being broken by the impending quantum computers. Therefore, the transition from classical primitives to quantum-safe primitives is indispensable to ensure the overall security of data en route. In this paper, we investigate applications of one of the post-quantum signatures called Hash-Based Signature (HBS) schemes for the security of IoT devices in the quantum era. We give a succinct overview of the evolution of HBS schemes with emphasis on their construction parameters and associated strengths and weaknesses. Then, we outline the striking features of HBS schemes and their significance for the IoT security in the quantum era. We investigate the optimal selection of HBS in the IoT networks with respect to their performance-constrained requirements, resource-constrained nature, and design optimization objectives. In addition to ongoing standardization efforts, we also highlight current and future research and deployment challenges along with possible solutions. Finally, we outline the essential measures and recommendations that must be adopted by the IoT ecosystem while preparing for the quantum world.Comment: 18 pages, 7 tables, 7 figure

    Real-World Post-Quantum Digital Signatures

    No full text
    Digital signatures are ubiquitous in modern security infrastructures. Their lack of diversity in industrial settings makes most contemporary systems susceptible to quantum computer-aided attacks. Alternatives exist, among which a family of well-understood schemes with minimal security requirements: hash-based signatures. In addition to being quantum-safe, hash-based signatures are modular, providing long-term security. Unfortunately, they are not yet being used in practice. We discuss the reasons for this gap between theory and practice and outline a strategy to bridge it. We then detail our work to realise the described plan
    corecore