3,612,327 research outputs found

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft Real-Time Systems

    Full text link
    We show a methodology for the computation of the probability of deadline miss for a periodic real-time task scheduled by a resource reservation algorithm. We propose a modelling technique for the system that reduces the computation of such a probability to that of the steady state probability of an infinite state Discrete Time Markov Chain with a periodic structure. This structure is exploited to develop an efficient numeric solution where different accuracy/computation time trade-offs can be obtained by operating on the granularity of the model. More importantly we offer a closed form conservative bound for the probability of a deadline miss. Our experiments reveal that the bound remains reasonably close to the experimental probability in one real-time application of practical interest. When this bound is used for the optimisation of the overall Quality of Service for a set of tasks sharing the CPU, it produces a good sub-optimal solution in a small amount of time.Comment: IEEE Transactions on Parallel and Distributed Systems, Volume:27, Issue: 3, March 201

    Quantum Monte Carlo solution of the dynamical mean field equations in real time

    Full text link
    We present real-time inchworm quantum Monte Carlo results for single-site dynamical mean field theory on an infinite coordination number Bethe lattice. Our numerically exact results are obtained on the L-shaped Keldysh contour and, being evaluated in real-time, avoid the analytic continuation issues typically encountered in Monte Carlo calculations. Our results show that inchworm Monte Carlo methods have now reached a state where they can be used as dynamical mean field impurity solvers and the dynamical sign problem can be overcome. As non-equilibrium problems can be simulated at the same cost, we envisage the main use of these methods as dynamical mean field solvers for time-dependent problems far from equilibrium

    Dynamic real-time hierarchical heuristic search for pathfinding.

    Get PDF
    Movement of Units in Real-Time Strategy (RTS) Games is a non-trivial and challenging task mainly due to three factors which are constraints on CPU and memory usage, dynamicity of the game world, and concurrency. In this paper, we are focusing on finding a novel solution for solving the pathfinding problem in RTS Games for the units which are controlled by the computer. The novel solution combines two AI Planning approaches: Hierarchical Task Network (HTN) and Real-Time Heuristic Search (RHS). In the proposed solution, HTNs are used as a dynamic abstraction of the game map while RHS works as planning engine with interleaving of plan making and action executions. The article provides algorithmic details of the model while the empirical details of the model are obtained by using a real-time strategy game engine called ORTS (Open Real-time Strategy). The implementation of the model and its evaluation methods are in progress however the results of the automatic HTN creation are obtained for a small scale game map
    corecore