49,466 research outputs found

    ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Scale

    Full text link
    Enterprises are increasingly deploying large camera networks for video analytics. Many target applications entail a common problem template: searching for and tracking an object or activity of interest (e.g. a speeding vehicle, a break-in) through a large camera network in live video. Such cross-camera analytics is compute and data intensive, with cost growing with the number of cameras and time. To address this cost challenge, we present ReXCam, a new system for efficient cross-camera video analytics. ReXCam exploits spatial and temporal locality in the dynamics of real camera networks to guide its inference-time search for a query identity. In an offline profiling phase, ReXCam builds a cross-camera correlation model that encodes the locality observed in historical traffic patterns. At inference time, ReXCam applies this model to filter frames that are not spatially and temporally correlated with the query identity's current position. In the cases of occasional missed detections, ReXCam performs a fast-replay search on recently filtered video frames, enabling gracefully recovery. Together, these techniques allow ReXCam to reduce compute workload by 8.3x on an 8-camera dataset, and by 23x - 38x on a simulated 130-camera dataset. ReXCam has been implemented and deployed on a testbed of 5 AWS DeepLens cameras.Comment: 15 page

    Robust Visual Tracking using Multi-Frame Multi-Feature Joint Modeling

    Full text link
    It remains a huge challenge to design effective and efficient trackers under complex scenarios, including occlusions, illumination changes and pose variations. To cope with this problem, a promising solution is to integrate the temporal consistency across consecutive frames and multiple feature cues in a unified model. Motivated by this idea, we propose a novel correlation filter-based tracker in this work, in which the temporal relatedness is reconciled under a multi-task learning framework and the multiple feature cues are modeled using a multi-view learning approach. We demonstrate the resulting regression model can be efficiently learned by exploiting the structure of blockwise diagonal matrix. A fast blockwise diagonal matrix inversion algorithm is developed thereafter for efficient online tracking. Meanwhile, we incorporate an adaptive scale estimation mechanism to strengthen the stability of scale variation tracking. We implement our tracker using two types of features and test it on two benchmark datasets. Experimental results demonstrate the superiority of our proposed approach when compared with other state-of-the-art trackers. project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htmlComment: This paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology. The MATLAB code of our method is available from our project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htm

    CityFlow: A City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-Identification

    Full text link
    Urban traffic optimization using traffic cameras as sensors is driving the need to advance state-of-the-art multi-target multi-camera (MTMC) tracking. This work introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours of synchronized HD videos from 40 cameras across 10 intersections, with the longest distance between two simultaneous cameras being 2.5 km. To the best of our knowledge, CityFlow is the largest-scale dataset in terms of spatial coverage and the number of cameras/videos in an urban environment. The dataset contains more than 200K annotated bounding boxes covering a wide range of scenes, viewing angles, vehicle models, and urban traffic flow conditions. Camera geometry and calibration information are provided to aid spatio-temporal analysis. In addition, a subset of the benchmark is made available for the task of image-based vehicle re-identification (ReID). We conducted an extensive experimental evaluation of baselines/state-of-the-art approaches in MTMC tracking, multi-target single-camera (MTSC) tracking, object detection, and image-based ReID on this dataset, analyzing the impact of different network architectures, loss functions, spatio-temporal models and their combinations on task effectiveness. An evaluation server is launched with the release of our benchmark at the 2019 AI City Challenge (https://www.aicitychallenge.org/) that allows researchers to compare the performance of their newest techniques. We expect this dataset to catalyze research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization(s) in the real world.Comment: Accepted for oral presentation at CVPR 2019 with review ratings of 2 strong accepts and 1 accept (work done during an internship at NVIDIA

    Intelligent Intersection: Two-Stream Convolutional Networks for Real-time Near Accident Detection in Traffic Video

    Full text link
    In Intelligent Transportation System, real-time systems that monitor and analyze road users become increasingly critical as we march toward the smart city era. Vision-based frameworks for Object Detection, Multiple Object Tracking, and Traffic Near Accident Detection are important applications of Intelligent Transportation System, particularly in video surveillance and etc. Although deep neural networks have recently achieved great success in many computer vision tasks, a uniformed framework for all the three tasks is still challenging where the challenges multiply from demand for real-time performance, complex urban setting, highly dynamic traffic event, and many traffic movements. In this paper, we propose a two-stream Convolutional Network architecture that performs real-time detection, tracking, and near accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for Object Detection and a temporal stream network to leverage motion features for Multiple Object Tracking. We detect near accidents by incorporating appearance features and motion features from two-stream networks. Using aerial videos, we propose a Traffic Near Accident Dataset (TNAD) covering various types of traffic interactions that is suitable for vision-based traffic analysis tasks. Our experiments demonstrate the advantage of our framework with an overall competitive qualitative and quantitative performance at high frame rates on the TNAD dataset.Comment: Submitted to ACM Transactions on Spatial Algorithms and Systems (TSAS); Special issue on Urban Mobility: Algorithms and Systems. arXiv admin note: text overlap with arXiv:1703.07402 by other author

    Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor

    Full text link
    In this paper, we focus on the two key aspects of multiple target tracking problem: 1) designing an accurate affinity measure to associate detections and 2) implementing an efficient and accurate (near) online multiple target tracking algorithm. As the first contribution, we introduce a novel Aggregated Local Flow Descriptor (ALFD) that encodes the relative motion pattern between a pair of temporally distant detections using long term interest point trajectories (IPTs). Leveraging on the IPTs, the ALFD provides a robust affinity measure for estimating the likelihood of matching detections regardless of the application scenarios. As another contribution, we present a Near-Online Multi-target Tracking (NOMT) algorithm. The tracking problem is formulated as a data-association between targets and detections in a temporal window, that is performed repeatedly at every frame. While being efficient, NOMT achieves robustness via integrating multiple cues including ALFD metric, target dynamics, appearance similarity, and long term trajectory regularization into the model. Our ablative analysis verifies the superiority of the ALFD metric over the other conventional affinity metrics. We run a comprehensive experimental evaluation on two challenging tracking datasets, KITTI and MOT datasets. The NOMT method combined with ALFD metric achieves the best accuracy in both datasets with significant margins (about 10% higher MOTA) over the state-of-the-arts

    Multiple Hypothesis Tracking Algorithm for Multi-Target Multi-Camera Tracking with Disjoint Views

    Full text link
    In this study, a multiple hypothesis tracking (MHT) algorithm for multi-target multi-camera tracking (MCT) with disjoint views is proposed. Our method forms track-hypothesis trees, and each branch of them represents a multi-camera track of a target that may move within a camera as well as move across cameras. Furthermore, multi-target tracking within a camera is performed simultaneously with the tree formation by manipulating a status of each track hypothesis. Each status represents three different stages of a multi-camera track: tracking, searching, and end-of-track. The tracking status means targets are tracked by a single camera tracker. In the searching status, the disappeared targets are examined if they reappear in other cameras. The end-of-track status does the target exited the camera network due to its lengthy invisibility. These three status assists MHT to form the track-hypothesis trees for multi-camera tracking. Furthermore, they present a gating technique for eliminating of unlikely observation-to-track association. In the experiments, they evaluate the proposed method using two datasets, DukeMTMC and NLPR-MCT, which demonstrates that the proposed method outperforms the state-of-the-art method in terms of improvement of the accuracy. In addition, they show that the proposed method can operate in real-time and online.Comment: published in IET image processing, 201

    Generic Multiview Visual Tracking

    Full text link
    Recent progresses in visual tracking have greatly improved the tracking performance. However, challenges such as occlusion and view change remain obstacles in real world deployment. A natural solution to these challenges is to use multiple cameras with multiview inputs, though existing systems are mostly limited to specific targets (e.g. human), static cameras, and/or camera calibration. To break through these limitations, we propose a generic multiview tracking (GMT) framework that allows camera movement, while requiring neither specific object model nor camera calibration. A key innovation in our framework is a cross-camera trajectory prediction network (TPN), which implicitly and dynamically encodes camera geometric relations, and hence addresses missing target issues such as occlusion. Moreover, during tracking, we assemble information across different cameras to dynamically update a novel collaborative correlation filter (CCF), which is shared among cameras to achieve robustness against view change. The two components are integrated into a correlation filter tracking framework, where the features are trained offline using existing single view tracking datasets. For evaluation, we first contribute a new generic multiview tracking dataset (GMTD) with careful annotations, and then run experiments on GMTD and the PETS2009 datasets. On both datasets, the proposed GMT algorithm shows clear advantages over state-of-the-art ones

    Deformable Distributed Multiple Detector Fusion for Multi-Person Tracking

    Full text link
    This paper addresses fully automated multi-person tracking in complex environments with challenging occlusion and extensive pose variations. Our solution combines multiple detectors for a set of different regions of interest (e.g., full-body and head) for multi-person tracking. The use of multiple detectors leads to fewer miss detections as it is able to exploit the complementary strengths of the individual detectors. While the number of false positives may increase with the increased number of bounding boxes detected from multiple detectors, we propose to group the detection outputs by bounding box location and depth information. For robustness to significant pose variations, deformable spatial relationship between detectors are learnt in our multi-person tracking system. On RGBD data from a live Intensive Care Unit (ICU), we show that the proposed method significantly improves multi-person tracking performance over state-of-the-art methods

    Spatiotemporal KSVD Dictionary Learning for Online Multi-target Tracking

    Full text link
    In this paper, we present a new spatial discriminative KSVD dictionary algorithm (STKSVD) for learning target appearance in online multi-target tracking. Different from other classification/recognition tasks (e.g. face, image recognition), learning target's appearance in online multi-target tracking is impacted by factors such as posture/articulation changes, partial occlusion by background scene or other targets, background changes (human detection bounding box covers human parts and part of the scene), etc. However, we observe that these variations occur gradually relative to spatial and temporal dynamics. We characterize the spatial and temporal information between target's samples through a new STKSVD appearance learning algorithm to better discriminate sparse code, linear classifier parameters and minimize reconstruction error in a single optimization system. Our appearance learning algorithm and tracking framework employ two different methods of calculating appearance similarity score in each stage of a two-stage association: a linear classifier in the first stage, and minimum residual errors in the second stage. The results tested using 2DMOT2015 dataset and its public Aggregated Channel features (ACF) human detection for all comparisons show that our method outperforms the existing related learning methods.Comment: To appear in Proceedings of 15th Conference on Computer and Robot Vision 2018 (Oral

    A Survey Of Activity Recognition And Understanding The Behavior In Video Survelliance

    Full text link
    This paper presents a review of human activity recognition and behaviour understanding in video sequence. The key objective of this paper is to provide a general review on the overall process of a surveillance system used in the current trend. Visual surveillance system is directed on automatic identification of events of interest, especially on tracking and classification of moving objects. The processing step of the video surveillance system includes the following stages: Surrounding model, object representation, object tracking, activity recognition and behaviour understanding. It describes techniques that use to define a general set of activities that are applicable to a wide range of scenes and environments in video sequence.Comment: 14 pages, 5 figures, 5 table
    • …
    corecore