7,501 research outputs found

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Designing Reusable Systems that Can Handle Change - Description-Driven Systems : Revisiting Object-Oriented Principles

    Full text link
    In the age of the Cloud and so-called Big Data systems must be increasingly flexible, reconfigurable and adaptable to change in addition to being developed rapidly. As a consequence, designing systems to cater for evolution is becoming critical to their success. To be able to cope with change, systems must have the capability of reuse and the ability to adapt as and when necessary to changes in requirements. Allowing systems to be self-describing is one way to facilitate this. To address the issues of reuse in designing evolvable systems, this paper proposes a so-called description-driven approach to systems design. This approach enables new versions of data structures and processes to be created alongside the old, thereby providing a history of changes to the underlying data models and enabling the capture of provenance data. The efficacy of the description-driven approach is exemplified by the CRISTAL project. CRISTAL is based on description-driven design principles; it uses versions of stored descriptions to define various versions of data which can be stored in diverse forms. This paper discusses the need for capturing holistic system description when modelling large-scale distributed systems.Comment: 8 pages, 1 figure and 1 table. Accepted by the 9th Int Conf on the Evaluation of Novel Approaches to Software Engineering (ENASE'14). Lisbon, Portugal. April 201
    • …
    corecore