17,210 research outputs found

    Flow and Congestion Control for Internet Streaming Applications

    Get PDF
    The emergence of streaming multimedia players provides users with low latency audio and video content over the Internet. Providing high-quality, best-effort, real-time multimedia content requires adaptive delivery schemes that fairly share the available network bandwidth with reliable data protocols such as TCP. This paper proposes a new flow and congestion control scheme, SCP (Streaming Control Protocol) , for real-time streaming of continuous multimedia data across the Internet. The design of SCP arose from several years of experience in building and using adaptive real-time streaming video players. SCP addresses two issues associated with real-time streaming. First, it uses a congestion control policy that allows it to share network bandwidth fairly with both TCP and other SCP streams. Second, it improves smoothness in streaming and ensures low, predictable latency. This distinguishes it from TCP\u27s jittery congestion avoidance policy that is based on linear growth and one-half reduction of its congestion window. In this paper, we present a description of SCP, and an evaluation of it using Internet-based experiments

    Micro protocol engineering for unstructured carriers: On the embedding of steganographic control protocols into audio transmissions

    Full text link
    Network steganography conceals the transfer of sensitive information within unobtrusive data in computer networks. So-called micro protocols are communication protocols placed within the payload of a network steganographic transfer. They enrich this transfer with features such as reliability, dynamic overlay routing, or performance optimization --- just to mention a few. We present different design approaches for the embedding of hidden channels with micro protocols in digitized audio signals under consideration of different requirements. On the basis of experimental results, our design approaches are compared, and introduced into a protocol engineering approach for micro protocols.Comment: 20 pages, 7 figures, 4 table

    Intelligent synthesis mechanism for deriving streaming priorities of multimedia content

    Get PDF
    We address the problem of integrating user preferences with network quality of service parameters for the streaming of media content, and suggest protocol stack configurations that satisfy user and technical requirements to the best available degree. Our approach is able to handle inconsistencies between user and networking considerations, formulating the problem of construction of tailor-made protocols as a prioritization problem, solvable using fuzzy programming

    Multicriteria decision making for enhanced perception-based multimedia communication

    Get PDF
    This paper proposes an approach that integrates technical concerns with user perceptual considerations for intelligent decision making in the construction of tailor-made multimedia communication protocols. Thus, the proposed approach, based on multicriteria decision making (MDM), incorporates not only classical networking considerations, but, indeed, user preferences as well. Furthermore, in keeping with the task-dependent nature consistently identified in multimedia scenarios, the suggested communication protocols also take into account the type of multimedia application that they are transporting. Lastly, this approach also opens the possibility for such protocols to dynamically adapt based on a changing operating environment and user's preferences

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    Intelligent protocol adaptation for enhanced medical e-collaboration

    Get PDF
    Copyright @ 2003 AAAIDistributed multimedia e-health applications have a set specific requirements which must be taken into account effective use is to be made of the limited resources provided by public telecommunication networks. Moreover, there an architectural gap between the provision of network-level Quality of Service (QoS) and user requirements of e-health applications. In this paper, we address the problem bridging this gap from a multi-attribute decision-making perspective in the context of a remote collaborative environment for back pain treatment. We propose intelligent mechanism that integrates user- related requirements with the more technical characterisation Quality of Service. We show how our framework is capable of suggesting appropriately tailored transmission protocols, by incorporating user requirements in the remote delivery e-health solutions
    corecore