1,099 research outputs found

    Sensor registration for robotic applications

    Full text link
    Multi-sensor data fusion plays an essential role in most robotic applications. Appropriate registration of information from different sensors is a fundamental requirement in multi-sensor data fusion. Registration requires significant effort particularly when sensor signals do not have direct geometric interpretations, observer dynamics are unknown and occlusions are present. In this paper, we propose Mutual Information (MI) based sensor registration which exploits the effect of a common cause in the observed space on the sensor outputs that does not require any prior knowledge of relative poses of the observers. Simulation results are presented to substantiate the claim that the algorithm is capable of registering the sensors in the presence of substantial observer dynamics. © 2008 Springer-Verlag Berlin Heidelberg

    Performance Evaluation of Adaptive H-infinity Filter

    Full text link
    This study is related to the use of adaptive H-infinity filter  for multi sensor data fusion ( based tracking. AHIF can work efficiently in the presence of uncertainties using sliding window concept. In the present use of , the length of window size is varied to eliminate/minimize the estimation errors and predict almost precise location of a target. Simulation experiments are conducted to evaluate performance of  in comparison with Kalman and H-Infinity filters for mild and evasive maneuvering targets.  Performs better in terms location accuracy and position fit error

    Distributed Estimation with Information-Seeking Control in Agent Network

    Get PDF
    We introduce a distributed, cooperative framework and method for Bayesian estimation and control in decentralized agent networks. Our framework combines joint estimation of time-varying global and local states with information-seeking control optimizing the behavior of the agents. It is suited to nonlinear and non-Gaussian problems and, in particular, to location-aware networks. For cooperative estimation, a combination of belief propagation message passing and consensus is used. For cooperative control, the negative posterior joint entropy of all states is maximized via a gradient ascent. The estimation layer provides the control layer with probabilistic information in the form of sample representations of probability distributions. Simulation results demonstrate intelligent behavior of the agents and excellent estimation performance for a simultaneous self-localization and target tracking problem. In a cooperative localization scenario with only one anchor, mobile agents can localize themselves after a short time with an accuracy that is higher than the accuracy of the performed distance measurements.Comment: 17 pages, 10 figure

    Adaptive filtration of the UAV movement parameters based on the AOA-measurement sensor networks

    Get PDF
    Currently, the urgent task is to assess the small-sized maneuvering UAVs movement parameters. The location of an unknown UAV as a radio source can be determined using AoA measurements of the wireless sensor network. To describe the movement of a maneuvering UAV, a model is used in the form of a dynamic system with switching in discrete time. The values of switching variable determine type of UAV movement. To synthesize trajectory filtering algorithms, the Markov property of the extended process is used, which includes a vector of UAV movement parameters and a switching variable. The optimal trajectory filtering algorithm describes a recurrent procedure for calculating the a posteriori probability density function of an extended process. The optimal filtering device is multi-channel with feedback between the channels. To synthesize a quasi-optimal algorithm, linearized equations of UAV coordinates measurement in a Cartesian coordinate system based on AoA-measurements of a sensor network were obtained and an measurement errors analysis was performed. The quasi-optimal algorithm is obtained using the Gaussian approximation method of conditional a posteriori probability density functions and implements sequential processing of incoming measurements. It provides a joint solution to the problems of estimating UAV coordinates and recognizing of its movement type. Analysis of developed algorithm efficiency was carried out by Monte Carlo method. Shows the dependences of movement types recognition probabilities. A comparative analysis is performed with the Kalman filtering algorithm

    Amorphous Placement and Retrieval of Sensory Data in Sparse Mobile Ad-Hoc Networks

    Full text link
    Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067

    Trajectory generation for lane-change maneuver of autonomous vehicles

    Get PDF
    Lane-change maneuver is one of the most thoroughly investigated automatic driving operations that can be used by an autonomous self-driving vehicle as a primitive for performing more complex operations like merging, entering/exiting highways or overtaking another vehicle. This thesis focuses on two coherent problems that are associated with the trajectory generation for lane-change maneuvers of autonomous vehicles in a highway scenario: (i) an effective velocity estimation of neighboring vehicles under different road scenarios involving linear and curvilinear motion of the vehicles, and (ii) trajectory generation based on the estimated velocities of neighboring vehicles for safe operation of self-driving cars during lane-change maneuvers. ^ We first propose a two-stage, interactive-multiple-model-based estimator to perform multi-target tracking of neighboring vehicles in a lane-changing scenario. The first stage deals with an adaptive window based turn-rate estimation for tracking maneuvering target vehicles using Kalman filter. In the second stage, variable-structure models with updated estimated turn-rate are utilized to perform data association followed by velocity estimation. Based on the estimated velocities of neighboring vehicles, piecewise Bezier-curve-based methods that minimize the safety/collision risk involved and maximize the comfort ride have been developed for the generation of desired trajectory for lane-change maneuvers. The proposed velocity-estimation and trajectory-generation algorithms have been validated experimentally using Pioneer3- DX mobile robots in a simulated lane-change environment as well as validated by computer simulations

    Multi-Bernoulli Sensor-Control via Minimization of Expected Estimation Errors

    Full text link
    This paper presents a sensor-control method for choosing the best next state of the sensor(s), that provide(s) accurate estimation results in a multi-target tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy
    • …
    corecore