988 research outputs found

    Gait Recognition from Motion Capture Data

    Full text link
    Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.Comment: Preprint. Full paper accepted at the ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans. 18 pages. arXiv admin note: substantial text overlap with arXiv:1701.00995, arXiv:1609.04392, arXiv:1609.0693

    Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation

    Get PDF
    Small sample dataset and two-dimensional (2D) approach are challenges to vision-based abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper, 3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First, the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud data are then converted to a high-level structured representation of the body. The parametric body model is used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation virtual samples and various body-shape virtual samples with multi-views are generated to extend the training samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model network. These are projected onto a uniform pattern space using deep learning based multi-set canonical correlation analysis. Experiments on four publicly available datasets show the proposed system performs well under various conditions

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    HUMAN GENDER CLASSIFICATION USING KINECT SENSOR: A REVIEW

    Get PDF
    Human Gender Classification using Kinect sensor aims to classifying people’s gender based on their outward appearance. Application areas of Kinect sensor technology includes security, marketing, healthcare, and gaming. However, because of the changes in pose, attire, and illumination, gender determination with the Kinect sensor is not a trivial task. It is based on a variety of characteristics, including biological, social network, face, and body aspects. In recent years, gender classification that utilizes the Kinect sensor became a popular and essential way for accurate gender classification. A variety of methods and approaches, like machine learning, convolutional neural networks, sport vector machine (SVM), etc., have been used for gender classification using a Kinect sensor. This paper presents the state of the art for gender classification, with a focus on the features, databases, procedures, and algorithms used in it. A review of recent studies on this subject using the Kinect sensor and other technologies is provided, together with information on the variables that affect the classification\u27s accuracy. In addition, several publicly accessible databases or datasets are used by researchers to classify people by gender are covered. Finlay, this overview offers insightful information about the potential future avenues for research on Kinect-based human gender classification

    Human Gait Recognition from Motion Capture Data in Signature Poses

    Get PDF
    Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classiers, and test some variations of their methods on their custom Kinect databases. For a practical system, it is not necessary to invent an ideal gait feature -- there have been many good geometric features designed -- but to smartly process the data there are at our disposal. This work proposes a gait recognition method without design of novel gait features; instead, we suggest an effective and highly efficient way of processing known types of features. Our method extracts a couple of joint angles from two signature poses within a gait cycle to form a gait pattern descriptor, and classifies the query subject by the baseline 1-NN classier. Not only are these poses distinctive enough, they also rarely accommodate motion irregularities that would result in confusion of identities. We experimentally demonstrate that our gait recognition method outperforms other relevant methods in terms of recognition rate and computational complexity. Evaluations were performed on an experimental database that precisely simulates street-level video surveillance environment
    corecore