4,536 research outputs found

    EAST: An Efficient and Accurate Scene Text Detector

    Full text link
    Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.Comment: Accepted to CVPR 2017, fix equation (3

    Scene Text Eraser

    Full text link
    The character information in natural scene images contains various personal information, such as telephone numbers, home addresses, etc. It is a high risk of leakage the information if they are published. In this paper, we proposed a scene text erasing method to properly hide the information via an inpainting convolutional neural network (CNN) model. The input is a scene text image, and the output is expected to be text erased image with all the character regions filled up the colors of the surrounding background pixels. This work is accomplished by a CNN model through convolution to deconvolution with interconnection process. The training samples and the corresponding inpainting images are considered as teaching signals for training. To evaluate the text erasing performance, the output images are detected by a novel scene text detection method. Subsequently, the same measurement on text detection is utilized for testing the images in benchmark dataset ICDAR2013. Compared with direct text detection way, the scene text erasing process demonstrates a drastically decrease on the precision, recall and f-score. That proves the effectiveness of proposed method for erasing the text in natural scene images

    Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition

    Full text link
    In this work we present a framework for the recognition of natural scene text. Our framework does not require any human-labelled data, and performs word recognition on the whole image holistically, departing from the character based recognition systems of the past. The deep neural network models at the centre of this framework are trained solely on data produced by a synthetic text generation engine -- synthetic data that is highly realistic and sufficient to replace real data, giving us infinite amounts of training data. This excess of data exposes new possibilities for word recognition models, and here we consider three models, each one "reading" words in a different way: via 90k-way dictionary encoding, character sequence encoding, and bag-of-N-grams encoding. In the scenarios of language based and completely unconstrained text recognition we greatly improve upon state-of-the-art performance on standard datasets, using our fast, simple machinery and requiring zero data-acquisition costs
    • …
    corecore