824,410 research outputs found

    Universalities in ultracold reactions of alkali polar molecules

    Full text link
    We consider ultracold collisions of ground-state, heteronuclear alkali dimers that are susceptible to four-center chemical reactions 2 AB -> A2 + B2 even at sub-microKelvin temperature. These reactions depend strongly on species, temperature, electric field, and confinement in an optical lattice. We calculate ab initio van der Walls coefficients for these interactions, and use a quantum formalism to study the scattering properties of such molecules under an external electric field and optical lattice. We also apply a quantum threshold model to explore the dependence of reaction rates on the various parameters. We find that, among the heteronuclear alkali fermionic species, LiNa is the least reactive, whereas LiCs is the most reactive. For the bosonic species, LiK is the most reactive in zero field, but all species considered - LiNa, LiK, LiRb, LiCs, and KRb - share a universal reaction rate once a sufficiently high electric field is applied.Comment: 12 pages, 9 figure

    Cold plasma-treated ringer’s saline: a weapon to target osteosarcoma

    Get PDF
    Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic e ects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.Peer ReviewedPostprint (published version

    The three species monomer-monomer model in the reaction-controlled limit

    Full text link
    We study the one dimensional three species monomer-monomer reaction model in the reaction controlled limit using mean-field theory and dynamic Monte Carlo simulations. The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing phases where the surface is saturated with one monomer species. The transitions from the reactive phase are all continuous, while the transitions between adsorbing phases are first-order. Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The transitions from the reactive to an adsorbing phase show directed percolation critical behaviour, while the universal behaviour at the bicritical points is in the even branching annihilating random walk class. The results are contrasted and compared to previous results for the adsorption-controlled limit of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty. accepted to Journal of Physics

    Fluctuating hydrodynamics of multi-species, non-reactive mixtures

    Full text link
    In this paper we discuss the formulation of the fuctuating Navier-Stokes (FNS) equations for multi-species, non-reactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of non-equilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well as reverse diffusion in a ternary mixture. Good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multi-species fluids. The extension to include chemical reactions will be treated in a sequel paper

    Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model

    Full text link
    We study a three species monomer-monomer catalytic surface reaction model with a reactive steady state bordered by three equivalent unreactive phases where the surface is saturated with one species. The transition from the reactive to a saturated phase shows directed percolation critical behavior. Each pair of these reactive-saturated phase boundaries join at a bicritical point where the universal behavior is in the even branching annihilating random walk class. We find the crossover exponent from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses multicol.sty. Accepted for publication in PR

    Evidence for detrimental cross interactions between reactive oxygen and nitrogen species in Leber's hereditary optic neuropathy cells

    Get PDF
    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber’s hereditary optic neuropathy (LHON) patients.We report that peripheral blood mononuclear cells (PBMCs), derived froma female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment

    Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection

    Get PDF
    Mitochondria are damaged by cardiac ischemia/reperfusion (I/R) injury but can contribute to cardioprotection. We tested if hyperkalemic cardioplegia (CP) and lidocaine (LID) differently modulate mitochondrial (m) bioenergetics and protect hearts against I/R injury. Guinea pig hearts (n = 71) were perfused with Krebs Ringer\u27s solution before perfusion for 1 minute just before ischemia with either CP (16 mM K+) or LID (1 mM) or Krebs Ringer\u27s (control, 4 mM K+). The 1-minute perfusion period assured treatment during ischemia but not on reperfusion. Cardiac function, NADH, FAD, m[Ca2+], and superoxide (reactive oxygen species) were assessed at baseline, during the 1-minute perfusion, and continuously during I/R. During the brief perfusion before ischemia, CP and LID decreased reactive oxygen species and increased NADH without changing m[Ca2+]. Additionally, CP decreased FAD. During ischemia, NADH was higher and reactive oxygen species was lower after CP and LID, whereas m[Ca2+] was lower only after LID. On reperfusion, NADH and FAD were more normalized, and m[Ca2+] and reactive oxygen species remained lower after CP and LID. Better functional recovery and smaller infarct size after CP and LID were accompanied by better mitochondrial function. These results suggest that mitochondria may be implicated, directly or indirectly, in protection by CP and LID against I/R injury

    Pattern formation for reactive species undergoing anisotropic diffusion

    Get PDF
    Turing instabilities for a two species reaction-diffusion systems is studied under anisotropic diffusion. More specifically, the diffusion constants which characterize the ability of the species to relocate in space are direction sensitive. Under this working hypothesis, the conditions for the onset of the instability are mathematically derived and numerically validated. Patterns which closely resemble those obtained in the classical context of isotropic diffusion, develop when the usual Turing condition is violated, along one of the two accessible directions of migration. Remarkably, the instability can also set in when the activator diffuses faster than the inhibitor, along the direction for which the usual Turing conditions are not matched
    corecore