824,410 research outputs found
Universalities in ultracold reactions of alkali polar molecules
We consider ultracold collisions of ground-state, heteronuclear alkali dimers
that are susceptible to four-center chemical reactions 2 AB -> A2 + B2 even at
sub-microKelvin temperature. These reactions depend strongly on species,
temperature, electric field, and confinement in an optical lattice. We
calculate ab initio van der Walls coefficients for these interactions, and use
a quantum formalism to study the scattering properties of such molecules under
an external electric field and optical lattice. We also apply a quantum
threshold model to explore the dependence of reaction rates on the various
parameters. We find that, among the heteronuclear alkali fermionic species,
LiNa is the least reactive, whereas LiCs is the most reactive. For the bosonic
species, LiK is the most reactive in zero field, but all species considered -
LiNa, LiK, LiRb, LiCs, and KRb - share a universal reaction rate once a
sufficiently high electric field is applied.Comment: 12 pages, 9 figure
Cold plasma-treated ringer’s saline: a weapon to target osteosarcoma
Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic e ects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.Peer ReviewedPostprint (published version
The three species monomer-monomer model in the reaction-controlled limit
We study the one dimensional three species monomer-monomer reaction model in
the reaction controlled limit using mean-field theory and dynamic Monte Carlo
simulations. The phase diagram consists of a reactive steady state bordered by
three equivalent adsorbing phases where the surface is saturated with one
monomer species. The transitions from the reactive phase are all continuous,
while the transitions between adsorbing phases are first-order. Bicritical
points occur where the reactive phase simultaneously meets two adsorbing
phases. The transitions from the reactive to an adsorbing phase show directed
percolation critical behaviour, while the universal behaviour at the bicritical
points is in the even branching annihilating random walk class. The results are
contrasted and compared to previous results for the adsorption-controlled limit
of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty.
accepted to Journal of Physics
Fluctuating hydrodynamics of multi-species, non-reactive mixtures
In this paper we discuss the formulation of the fuctuating Navier-Stokes
(FNS) equations for multi-species, non-reactive fluids. In particular, we
establish a form suitable for numerical solution of the resulting stochastic
partial differential equations. An accurate and efficient numerical scheme,
based on our previous methods for single species and binary mixtures, is
presented and tested at equilibrium as well as for a variety of non-equilibrium
problems. These include the study of giant nonequilibrium concentration
fluctuations in a ternary mixture in the presence of a diffusion barrier, the
triggering of a Rayleigh-Taylor instability by diffusion in a four-species
mixture, as well as reverse diffusion in a ternary mixture. Good agreement with
theory and experiment demonstrates that the formulation is robust and can serve
as a useful tool in the study of thermal fluctuations for multi-species fluids.
The extension to include chemical reactions will be treated in a sequel paper
Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model
We study a three species monomer-monomer catalytic surface reaction model
with a reactive steady state bordered by three equivalent unreactive phases
where the surface is saturated with one species. The transition from the
reactive to a saturated phase shows directed percolation critical behavior.
Each pair of these reactive-saturated phase boundaries join at a bicritical
point where the universal behavior is in the even branching annihilating random
walk class. We find the crossover exponent from bicritical to critical behavior
and a new exponent associated with the bicritical interface dynamics.Comment: 4 pages RevTex. 4 eps figures included with psfig.sty. Uses
multicol.sty. Accepted for publication in PR
Evidence for detrimental cross interactions between reactive oxygen and nitrogen species in Leber's hereditary optic neuropathy cells
Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species
bioavailability can contribute to cell dysfunction in Leber’s hereditary optic neuropathy (LHON) patients.We report that peripheral
blood mononuclear cells (PBMCs), derived froma female LHON patient with bilateral reduced vision and carrying the pathogenic
mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed
by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays
with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure,
leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important
role in driving LHON pathology when excess NO remains available over time in the cell environment
Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection
Mitochondria are damaged by cardiac ischemia/reperfusion (I/R) injury but can contribute to cardioprotection. We tested if hyperkalemic cardioplegia (CP) and lidocaine (LID) differently modulate mitochondrial (m) bioenergetics and protect hearts against I/R injury. Guinea pig hearts (n = 71) were perfused with Krebs Ringer\u27s solution before perfusion for 1 minute just before ischemia with either CP (16 mM K+) or LID (1 mM) or Krebs Ringer\u27s (control, 4 mM K+). The 1-minute perfusion period assured treatment during ischemia but not on reperfusion. Cardiac function, NADH, FAD, m[Ca2+], and superoxide (reactive oxygen species) were assessed at baseline, during the 1-minute perfusion, and continuously during I/R. During the brief perfusion before ischemia, CP and LID decreased reactive oxygen species and increased NADH without changing m[Ca2+]. Additionally, CP decreased FAD. During ischemia, NADH was higher and reactive oxygen species was lower after CP and LID, whereas m[Ca2+] was lower only after LID. On reperfusion, NADH and FAD were more normalized, and m[Ca2+] and reactive oxygen species remained lower after CP and LID. Better functional recovery and smaller infarct size after CP and LID were accompanied by better mitochondrial function. These results suggest that mitochondria may be implicated, directly or indirectly, in protection by CP and LID against I/R injury
Pattern formation for reactive species undergoing anisotropic diffusion
Turing instabilities for a two species reaction-diffusion systems is studied
under anisotropic diffusion. More specifically, the diffusion constants which
characterize the ability of the species to relocate in space are direction
sensitive. Under this working hypothesis, the conditions for the onset of the
instability are mathematically derived and numerically validated. Patterns
which closely resemble those obtained in the classical context of isotropic
diffusion, develop when the usual Turing condition is violated, along one of
the two accessible directions of migration. Remarkably, the instability can
also set in when the activator diffuses faster than the inhibitor, along the
direction for which the usual Turing conditions are not matched
- …
